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Abstract

In the standard Reinforcement Learning (RL)
paradigm, the action space is assumed to be fixed
and immutable throughout the learning process.
However, in many real-world scenarios, not all
actions are available at every decision stage. The
available action set may depend on the current
environment state, domain-specific constraints, or
other (potentially stochastic) factors outside the
agent’s control. To address these realistic scenar-
ios, we introduce a novel paradigm called Sleep-
ing Reinforcement Learning, where the available
action set varies during the interaction with the
environment. We start with the simpler scenario
in which the available action sets are revealed at
the beginning of each episode. We show that a
modification of UCBVI achieves regret of order
rOpH

?
SAT q, where H is the horizon, S and A

are the cardinalities of the state and action spaces,
respectively, and T is the learning horizon. Next,
we address the more challenging and realistic sce-
nario in which the available actions are disclosed
only at each decision stage. By leveraging a novel
construction, we establish a minimax lower bound
of order Ωp

?
T2A{2q when the availability of ac-

tions is governed by a Markovian process, estab-
lishing a statistical barrier of the problem. Focus-
ing on the statistically tractable case where action
availability depends only on the current state and
stage, we propose a new optimistic algorithm that
achieves regret guarantees of order rOpH

?
SAT q,

showing that the problem shares the same com-
plexity of standard RL.

1. Introduction
In recent years, Reinforcement Learning (RL, Sutton &
Barto, 2018) has demonstrated remarkable success in solv-
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ing sequential decision-making problems mainly in sim-
ulated environments. Nowadays, we witness an increas-
ing demand to transition its capabilities from simulation to
real-world applications. However, to move RL to practical
domains, we still experience notable challenges that need
to be addressed from both the algorithmic and theoretical
perspectives. One of these challenges concerns actions’
availability. Indeed, in the standard RL framework, the set
of actions that can be played in a given state is assumed to be
known and immutable throughout the interaction. However,
in several real-world sequential decision-making problems,
it may not be possible to play some of the actions under
some circumstances.

Motivation. Consider the scenario depicted in Figure 1a,
in which we want to control a physical system (e.g., a robot)
characterized by a given action space A made of all the
actions the agent can perform. At every stage h, the RL
agent observes the state of the environment sh and decides
the action ah P A to play. Then, such an action is usually
validated by a low-level controller (LLC), which checks
whether the action is feasible or not (depending, for in-
stance, on some physical constraints or safety reasons). On
the one hand, if feasible, the action is executed as is. On
the other hand, if the action is not feasible, the low-level
controller overrides it with another action, rah P A, such as
one suggested by a baseline policy or the “closest” feasible
action (according to some domain-specific metric). From
the agent’s perspective, the LLC can be considered as a part
of the environment. However, when the agent is unaware
that certain actions are infeasible (and may only realize it
after the LLC intervenes), the performance of the learned
policy can be significantly harmed (see Example 1). If the
agent is instead aware of the available actions, we ideally
want it to select an action among those deemed feasible by
the LLC. This scenario can be addressed by adopting a solu-
tion in which a low-level filter makes the RL agent aware of
which actions Ah Ď A are available before actually making
a decision (Figure 1b).

This problem of learning in scenarios with varying action
availability is widely studied and discussed for Multi-Armed
Bandits (MABs, Lattimore & Szepesvári, 2020) under the
name of “Sleeping” MABs. This research line comprises
stochastic and adversarial choices for both rewards and
action availability (Kleinberg et al., 2008; Kanade et al.,
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Figure 1. Example of a possible interaction protocol for Classic
and Sleeping Reinforcement Learning.

2009; Saha et al., 2020; Nguyen & Mehta, 2024) and sev-
eral notions of regret (Gaillard et al., 2023). In RL, instead,
this problem remains unaddressed despite its practical rele-
vance.1 This work aims to fill such a gap in the literature.

Original Contributions. In this paper, we propose
the novel paradigm of Sleeping Reinforcement Learning
(SleRL) and study it from a theoretical perspective. The
contributions of this work are summarized as follows:

• In Section 2, we formally introduce the framework of the
episodic finite-horizon Sleeping Markov Decision Pro-
cesses (SleMDPs) setting, a generalization of MDPs in
which the available action set changes throughout the in-
teraction. Then, we introduce the two types of action set
disclosure, namely per-episode and per-stage disclosures.
Finally, we present two stochastic models governing the
action availability, namely Markovian and independent.

• In Section 3, we consider the simpler case of per-
episode disclosure, where the agent is informed of
the available action sets at the beginning of each
episode. We introduce the definitions of value func-
tion, optimality, and regret. Furthermore, we present
Action-Restricted UCBVI (AR-UCBVI), an al-
gorithm based on UCBVI (Azar et al., 2017) and analyze
its regret, showing that it matches the lower bound of stan-
dard RL up to logarithmic factors for sufficiently large T
(Theorem 3.2).

• In Section 4, we address the more realistic and challeng-
ing setting of per-stage disclosure, where the available
action set is revealed for the current stage only, imme-

1The scenario in which not all the actions are available for
every state in a deterministic manner is discussed under the name
of action masking (Huang & Ontañón, 2022), see Appendix B.

diately before the agent selects an action. We address
the general scenario in which the action availabilities are
governed by a Markovian process and illustrate how the
problem can be framed as solving an augmented MDP in
which the available action set is incorporated in the state.
Based on this transformation, we define the value function,
optimality, and regret. Then, through a novel construc-
tion (Figure 3), we demonstrate a statistical barrier of this
setting, showing that an exponential dependence on the
number of actions A is unavoidable in the regret, proving
a lower bound of order ΩpH

?
SAT2A{2q (Theorem 4.2).

• In Section 5, we turn to the tractable case of independent
per-stage disclosure, where the action availabilities are
sampled independently at every stage. We propose a novel
optimistic algorithm, Sleeping UCBVI (S-UCBVI),
that extends the classical UCBVI with the estimate of the
action availability probabilities and appropriately defined
new bonuses. We show that S-UCBVI enjoys a regret
bound of order rOpH

?
SAT q for sufficiently large T (The-

orem 5.2), matching the lower bound, up to logarithmic
factors.

Related works are discussed in Appendix B. Omitted proofs
are provided in Appendices C and D. A numerical validation
of the work is provided in Appendix E.

2. The Sleeping MDPs Setting
In this section, we first introduce the notation and the stan-
dard episodic finite-horizon MDP setting, and then we
present the novel Sleeping MDPs (SleMDPs) framework.

Notation. Given a, b P N with a ă b, we define Ja, bK :“
ta, a`1, . . . , bu and JaK :“ J1, aK. Given a finite set X , we
denote as ∆pX q the probability simplex over X , with |X |

its cardinality and with PpX q its power set. Let q P ∆pX q,
we denote its support as supppqq “ tx P X : qpxq ą 0u.

Markov Decision Processes. We define a finite-horizon
undiscounted MDP as a tuple M :“ pS,A, P,R,H, sq,
where S and A are the state and action spaces, respectively,
H is the horizon of the episode, P : S ˆAˆ JHK Ñ ∆pSq

is the stage-dependent transition probability distribution,
R : S ˆ A ˆ JHK Ñ r0, 1s is the deterministic reward
function, assumed to be known,2 and s P S is the initial state.
We assume the state space and the action space are finite
sets, and we denote their cardinalities as |S| “: S ă `8

and |A| “: A ă `8. The agent’s behavior is modeled
with a Markovian policy π : S ˆ JHK Ñ ∆pAq. The agent
interacts with the environment for K episodes of length H ,
and we denote with T “ KH the total number of decisions.

Sleeping Markov Decision Processes. A SleMDPs is

2This is a mild assumption that can be removed with no addi-
tional complexity, as learning the transition probability P is more
challenging than learning the reward function R.
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Algorithm 1: Interaction Protocol — Per-episode.

1 for k P JKK do
2 Agent observes Ak,hpsq, @hPJHK, s P S
3 for h P JHK do
4 Agent observes state sk,h
5 Agent plays ak,h P Ak,hpsk,hq

6 Environment returns rk,h and sk,h`1

7 end
8 end

Algorithm 2: Interaction Protocol — Per-stage.

1 for k P JKK do
2 for h P JHK do
3 Agent observes state sk,h
4 Agent observes Ak,h

5 Agent plays ak,h P Ak,h

6 Environment returns rk,h and sk,h`1

7 end
8 end

defined as a tuple M :“ pS,A, C, P,R,H, sq, where
pS,A, P,R,H, sq is standard MDP as defined above, and
C is the action availability model, that will be character-
ized later. Formally, for every episode k P JKK, at every
stage h P JHK, for the current state sk,h P S, the avail-
able action set Ak,hpsq Ď A is an element of the power
set PpAq, selected according to the model C. We as-
sume that at least one action can always be played (i.e.,
Ak,hpsk,hq ‰ tu,@k P JKK, h P JHK, sk,h P S).

Action Disclosure. The available actions can be revealed to
the agent either at the beginning of the current episode for
every stage and state, i.e., per-episode disclosure, or when
the agent is asked to choose an action in the current stage
and state, i.e., per-stage disclosure. The two interaction
protocols are presented in Algorithms 1 and 2, respectively.

Example 1. To illustrate the effect of the per-episode (PE)
and per-stage (PS) disclosures of action availability and
the effect of a low-level controller (LLC), we consider the
MDP in Figure 2a, whose goal is to go from initial state
A to the absorbing state C. We have two paths to do so.
First, we can play action Fs (i.e., forward safe) in state
A, which deterministically leads to C with a reward of ´2.
Second, we can play action F (i.e., forward) in state A and
deterministically reach B without costs (r “ 0). Then, in
state B, for all subsequent stages, action F is available with
probability p P r0, 1s. If F is not available, we can volun-
tarily stay in B and wait (i.e., play action Sv), obtaining a
reward of ´1. In state B, there is also another action Sf

(i.e., stay forced), that makes the agent remain in state B
and receive a reward of ´2. Action Sf is employed by the
LLC to override forbidden actions (i.e., the attempt to play
F when it is not available). We now compute and plot as
a function of p (Figure 2b) the optimal value functions for

Fs pr“´2q

F
pr“

0q

Sv pr“´1q

Sf pr“´2q

F
pr“

0q

A

B

C

(a) Illustrative Sleeping MDP.
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Figure 2. Illustrative example.

PE and PS disclosure and for LLC (see Appendix A for a
complete discussion):

• PE disclosure. Since we know whether action F is avail-
able in state B at the beginning of the episode, we play
F in state A if action F is available in state B in stages
h P t2, 3u getting either reward 0 or ´1 (playing Sv in
stage h “ 2); otherwise we play Fs getting ´2 as reward.

• PS disclosure. Here, we do not know if action F will be
available in state B. If we play F in state A, we may wait
several stages in B playing action Sv until F becomes
available and getting ´p1´pq{p as expected total reward.
Instead, if we play Fs in state A, we get ´2 as reward.

• LLC. Here, when we are in state B, we do not observe
if action F is available. Since the LLC overrides F with
Sv when F is not available, if we decide to go through
state B, we will get ´2p1´ pq{p as expected total reward;
otherwise, by playing Fs in state A, we get ´2 as reward.

As expected, the value functions are sorted as: V ˚
PEpAq ě

V ˚
PSpAq ě V ˚

LLCpAq , where V ˚
PEpAq, V ˚

PSpAq, and V ˚
LLCpAq

represent the optimal state value function in state A in the
PE, PS, and LLC cases, respectively (see also Section 6).

Action Availability Models. We admit the available action
sets to be chosen in a stochastic way as follows:

• Independent (referred as ind) action availabilities: we
define C “ C ind : S ˆ JHK Ñ ∆pPpAqq. For every
action subset B Ď A, state s P S, and stage h P JHK,
C ind

h pB|sq “ PrpAk,h “ B|sk,h “ sq represents the
probability that B is the available action set in state s at
stage h. Notably, the availability of an action does not
depend on whether it was available in the past.

• Markovian (referred as Markov) action availabilities: we
define C “ CMarkov : S2 ˆ A ˆ JHK ˆ PpAq Ñ

∆pPpAqq. For every action subsets B,B1 Ď A,
states s, s1 P S, action a P Ak,h, and stage h P

JHK, CMarkov
h pB1|s1, s, a,Bq “ PrpAk,h “ B1|sk,h “

s1, sk,h´1 “ s, ak,h´1 “ a,Ak,h´1 “ Bq represents the
probability that B1 is the available action set observed in
state s1 at stage h, conditioned to the fact that B was the
available action set, s the state, and a the played action at
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stage h ´ 1, respectively.3

3. Per-episode Disclosure
In this section, we face the simpler case in which the avail-
able actions are revealed at the beginning of the episode for
every state and stage. We start by discussing the notions
of policy, value function, optimality, and regret. Then, we
present an algorithm matching the regret of standard RL.
We highlight that the per-episode disclosure can be seen as
a generalization of action masking (see Appendix B).

Policies, Value Functions, and Optimality. The action
availabilities Ak,hpsq are revealed at the beginning of each
episode k P JKK, for every state s P S and stage h P JHK.
Thus, we restrict the policy space to the policies that play
available actions only, i.e., Πk :“ tπ : S ˆ JHK Ñ

∆pAq s.t. @ps, hq P S ˆ JHK : supppπhp¨|sqq Ď Ak,hpsqu.
For episode k and policy π P Πk, we denote with V π

h psq

the value function in state s at stage h following policy
π and with Qπ

hps, aq the state-action value function, re-
stricted to the available actions a P Ak,hpsq. For episode
k, we denote as optimal policy any policy fulfilling π˚

k P

argmaxπPΠk
V π
1 psq and the optimal value functions as

V ˚
k,hpsq “ V

π˚
k

h psq and Q˚
k,hps, aq “ Q

π˚
k

h ps, aq. An op-
timal policy π˚

k can be retrieved as the greedy policy w.r.t.
Q˚

h, restricting to the available actions using a variation of
value iteration, namely Action-Restricted Value
Iteration (AR-VI, Algorithm 3).4

Regret. We evaluate the performance of an algorithm A in
terms of cumulative regret over the K P N episodes against
the optimal policy π˚

k of each episode.

Definition 3.1 (Per-episode Disclosure Regret). Let A be an
algorithm playing sequence of policies pπkqKk“1P

ŚK
k“1Πk,

we define the per-episode (PE) disclosure regret as:

RPEpA, T q :“
ÿ

kPJKK

`

V ˚
k,1psq ´ V πk

1 psq
˘

. (1)

Since we know which actions are available at every stage
and for every state in advance, we can afford to compete
against the best policy π˚

k in every episode. Indeed, re-
gardless of the fact that the action availabilities Ak,hpsq are
chosen in a stochastic or adversarial way, we are able to
tackle the problem as if we were in a different MDP (defined
in terms of the available actions) in each episode k.

Lower Bound. We now present a minimax lower bound

3With little abuse, we are using the same symbol even for stage
h “ 1, where sh´1, ah´1, and Ak,h´1 are not defined. In such a
case, we consider CMarkov

1 pB1
|s1

q “ PrpAk,1 “ B1
|sk,1 “ s1

q as
the initial-action availability distribution.

4This is totally equivalent to solving an MDP with action sets
that depend on the state and stage.

Algorithm 3: Action-Restricted Value

Iteration (AR-VI) for episode k.
Input :Sleeping MDP M “ pS,A, C, P,R,H, sq,

Available actions Ak,hpsq, @h P JHK, s P S
1 V ˚

k,H`1psq “ 0

2 for h P tH,H ´ 1, . . . , 1u do
3 Q˚

k,hps, aq “ Rhps, aq`Es1„Php¨|s,aq

“

V ˚
k,h`1ps1

q
‰

,
@a P Ak,hpsq, s P S

4 V ˚
k,hpsq “ maxaPAk,hpsq Q

˚
k,hps, aq, @s P S

5 end
6 return
π˚
k,hpsq P argmax

aPAk,hpsq

Q˚
k,hps, aq, @s P S, h P JHK

for SleMDPs with per-episode disclosure.

Theorem 3.1 (Lower Bound – Per-episode Disclosure). For
any algorithm A, there exists an instance of Sleeping MDP
such that, for T ě ΩpH2SAq, the per-episode disclosure
regret satisfies:

E rRPEpA, T qs ě Ω
´

H
?
SAT

¯

.

Proof. The proof directly follows from that of (Domingues
et al., 2021, Theorem 9).5 We have to lower bound the
regret on the worst instance of SleMDPs with per-episode
disclosure. Since the SleMDPs per-episode disclosure are
a generalization of MDPs (an MDP is a SleMDP where
Ak,hpsq “ A, @s P S, h P JHK, k P JKK), the regret lower
bound for MDPs holds for SleMDPs too.

Algorithm. To learn in the per-episode scenario, we modify
UCBVI (Azar et al., 2017) to handle the action availabilities.
We design Action-Restricted UCBVI (AR-UCBVI,
Algorithm 4), the optimistic counterpart of the AR-VI (Al-
gorithm 3). From a high-level perspective, besides the fact
that the maximization in Bellman’s equation is computed
over the available actions Ah,kpsq only, AR-UCBVI has to
carefully handle the optimism to guarantee a monotonicity
property of the sequence of estimated state-action value
functions. The algorithm starts by initializing the visitation
counters (line 1). Then, for every episode k P JKK, the
algorithm observes the action availabilities Ak,hpsq (line 3)
and estimates the transition model pPk,hps1|s, aq (line 4):

pPk,hps1|s, aq “
Nk,hps, a, s1q

Nk,hps, aq
, (2)

where Nk,hps, aq is the number of times action a was played
in state s in stage h, and Nk,hps, a, s1q is the number of
times the next state was s1. Then, AR-UCBVI runs opti-
mistic value iteration to obtain optimistic estimates of the op-
timal action-value function Q˚

k,hps, aq. As mentioned above,
this step requires more attention w.r.t. that of (Azar et al.,

5This result differs from the one of (Domingues et al., 2021)
due to the different notation adopted.
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Algorithm 4: Action-Restricted UCBVI

(AR-UCBVI).

1 Initialize: N0,hps, a, s1
q “ 0, N0,hps, aq “ 0,

N0,hpsq “ 0, @ps, a, s1, hq P S ˆ A ˆ S ˆ JHK
2 for k P JKK do
3 Agent observes Ak,hpsq, @h P JHK, s P S
4 Estimate pPk,hps1

|s, aq as in Eq. (2)
5 //Compute pVk,¨p¨q, pQk,¨p¨, ¨q for episode k

6 pQk
0,hps, aq “ H ´h`1, @ps, a, hq P S ˆAˆ JHK

7 for j P JkK do
8 Initialize pV k

j,H`1psq “ 0, @s P S
9 for h “ tH,H ´ 1, . . . , 1u do

10 for s P S do
11 Compute pQk

j,hps, aq,@a P Ak,hpsq

as in Eq. (3)
12 Compute pV k

j,hpsq “ max
aPAk,hpsq

pQk
j,hps, aq

13 end
14 end
15 end
16 //Play optimistically for episode k
17 Agent observes state sk,1
18 for h P JHK do
19 Agent plays ak,h P argmax

aPAk,hpsk,hq

pQk
k,hpsk,h, aq

20 Environment returns rk,h and sk,h`1

21 Increment counters
22 end
23 end

2017). Indeed, the original UCBVI, to ensure a monotoni-
cally non-increasing sequence of the estimates pQk,hps, aq,
limits the current estimate pQk,hps, aq (computed with all
samples up to episode k ´ 1) to the previous episode esti-
mate pQk´1,hps, aq (computed with all samples up to episode
k´2). This operation makes no sense in a SleMPD since the
action availabilities Ak,hpsq and Ak´1,hpsq may change be-
tween consecutive episodes, making pQk´1,hps, aq no longer
an optimistic estimate of the true Q˚

k,hps, aq. For this rea-
son, we have to compute the sequence of optimistic value
functions pQk

j,hps, aq for the action availabilities Ak,hpsq of

episode k using the estimates pPj,h of all episodes j with
j P JkK. This way, we make use of all the samples collected
so far (even in episodes j with action availabilities different
from the current ones Ak,hpsq). Furthermore, this ensures
that the sequence of estimates pQk

j,hps, aq is monotonically
non-increasing in j. As shown in Algorithm 4 (lines 6-15),
AR-UCBVI starts from h “ H and goes backward comput-
ing the optimistic pQk

j,hps, aq for every a P Ak,hpsq:

pQk
j,hps,aq“min

!

pQk
j´1,hps,aq, (3)

Rhps,aq`
ÿ

s1PS

pPj,hps1|s,aq pV k
j,h`1ps1q`bQ,k

j,h ps,aq

)

,

where bQ,k
j,h ps, aq is the exploration bonus obtained from

a refined analysis of UCBVI (Drago et al., 2025) and is
defined as:

bQ,k
j,h ps, aq :“

d

4LpVk
j,hps, aq

Nj,hps, aq
`

7HL

3Nj,hps, aq

`

g

f

f

e

8Es1„ pPj,hp¨|s,aq
rb

Q,k

j,h`1ps1qs

Nj,hps, aq
,

where pVk
j,h “ Vars1„ pPj,hp¨|s,aq

r pV k
j,h`1ps1qs is the

empirical variance of the next-state value estimate,
b
Q,k

j,h`1ps1q “ mint842H3S2AL{Nj,h`1ps1q, H2u is the ad-
ditional bonus, and L “ lnp5HSAT {δq. Then, we compute
the value estimate as pV k

j,hpsq “ maxaPAk,hpsq
pQk
j,hps, aq.

Finally, the algorithm plays an action greedily w.r.t. the
optimistic estimate pQk

k,hps, aq (lines 17-22).

The following result provides the regret of AR-UCBVI,
showing that learning in a SleMDP with per-episode disclo-
sure does not increase the regret w.r.t. standard RL.

Theorem 3.2 (Upper Bound – Per-episode Disclosure). For
any δ P p0, 1q, with probability 1 ´ δ, the per-episode
disclosure regret of AR-UCBVI is bounded by:

RPEpAR-UCBVI, T q ď 34HL
?
SAT ` 2500H4S2AL

2
,

where L “ lnp5HSAT {δq. For T ě ΩpH6S3Aq, selecting
δ “ 1{T, we have:

E rRPEpAR-UCBVI, T qs ď rO
´

H
?
SAT

¯

,

where the expectation is taken w.r.t. the stochasticity of the
environment.

Proof. The proof of this theorem follows the one of (Azar
et al., 2017, Theorem 2). The key challenge is the com-
putation of the bonus bQ,k

j,h . Indeed, Lemma 17 of (Azar
et al., 2017) heavily relies on the fact that the sequence
pVk,hpsq´V ˚

h psq is monotonically non-increasing in k. This
is not the case for our sequence pV k

k,hpsq ´ V ˚
k,hpsq since, as

already explained, the action availabilities Ak,hpsq change
across episodes. For this reason, we resort to the sequence
pV k
j,hpsq ´ V ˚

k,hpsq for fixed k which is monotonically non-
increasing in j. This allows us to apply Lemma 16 of (Azar
et al., 2017) pretending to have played in the MDP with ac-
tion availabilities of episode k, i.e., Ak,hpsq, for all episodes
j P JkK and, ultimately, getting the bonus as in Lemma 17.
Notice that we apply the pigeonhole principle considering
Ak,hpsq “ A which represents the worst case.

4. Per-stage Disclosure: Markovian Case
We now analyze the realistic scenario where the set of
available actions is revealed for the current stage only
with no knowledge of future availabilities. In this sec-
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tion, we focus on Markovian availabilities i.e., Ak,h „

CMarkov
h p¨|sk,h, sk,h´1, ak,h´1,Ak,h´1q.

Augmented MDP, Policies, Value Functions, and Opti-
mality. To address this scenario, we can map the SleMDP
with an augmented MDP in which we encode action avail-
ability sets in the state representation.

Definition 4.1 (Augmented MDP). Let M :“
pS,A, C, P,R,H, sq be a SleMDP, we define the
augmented MDP ĂM :“ p rS,A, rP , rR,H, rP0q, with:

• augmented state space rS :“ S ˆ PpAq;
• augmented transition probability, defined for every rs “

ps,Bq, rs1 “ ps1,B1q P rS, a P A, and h P JHK as:
rPhprs1|rs, aq “ Phps1|s, aqCMarkov

h pB1|s1, s, a,Bq;
• reward function, defined for every rs “ ps,Bq P rS and
a P A as: rRprs, aq “ Rps, aq;

• initial augmented-state distribution, defined for every rs “

ps,Bq P rS as rP0prsq “ CMarkov
1 pB|sq1ts “ su.

Note that the augmented MDP has a state space with car-
dinality | rS| “ S2A, exponential in A. The policy space in
the augmented MDP is defined as rΠ :“ trπ : rS ˆ JHK Ñ

∆pAq s.t. @rs “ ps,Bq P rS : suppprπp¨|rsqq Ď Bu, to en-
sure that only available actions are played.6 For a policy
rπ, augmented state rs “ ps,Bq, available action a P B,
and stage h P JHK, we denote with rV rπ

h prsq “ rV rπ
h pps,Bqq

and rQrπ
hprs, aq “ rQrπ

hpps,Bq, aq the value and state-action
value functions, respectively, in the augmented MDP, the
latter restricted to the available actions a P B. An opti-
mal policy for the augmented MDP is any policy such that
rπ˚ P argmax

rπP rΠ
rV rπ and the optimal value functions as

rV ˚
h prsq “ rV rπ˚

h prsq and rQ˚
hprs, aq “ rQrπ˚

h prs, aq. An optimal
policy rπ˚ can be obtained as greedy w.r.t. rQ˚.7 The optimal
value functions can be computed using value iteration on
the augmented MDP (see Algorithm 5).

Considering the protocol of Algorithm 2, we define the
value function for the original SleMDP V rπ

1 psq in the initial
state s P S as the expectation of that of the augmented MDP
rV rπ
1 pps,Bqq over the available action sets B P PpAq:

V rπ
1 psq :“ E

B„CMarkovp¨|sq
r rV rπ

1 pps,Bqqs. (4)

Similarly, for the optimal value function, we have:
V ˚
1 psq :“ EB„CMarkovp¨|sqrrV ˚

1 pps,Bqqs.

Regret. We evaluate the performance of an algorithm in
terms of cumulative regret over the K P N episodes against

6Note the fundamental difference w.r.t. the per-episode case,
where the policy space was different for every episode k, while here
in the per-stage case, the policy space is the same for all episodes,
but the policy is conditioned to the actual available actions set B.

7As usual, we are in an MDP and, therefore, there exists a
policy rπ˚ optimal from every state rs.

the optimal policy rπ˚ constant throughout the episodes.

Definition 4.2 (Per-stage Disclosure Regret). Let A be an
algorithm playing a sequence of policies prπkqKk“1 P rΠK ,
we define the per-stage disclosure (PS) policy regret as:

RPSpA, T q “ KV ˚
1 psq ´

ÿ

kPJKK

V rπk
1 psq.

Differently from the per-episode case (Definition 3.1) where
comparator π˚

k changes over episodes, in the per-stage case
(Definition 4.2), we consider a constant comparator rπ˚.

Algorithm. Given the mapping to the augmented MDP, we
can resort to the original UCBVI (Azar et al., 2017) to learn
in the SleMDP with the following regret guarantees.

Theorem 4.1 (Upper Bound – Per-stage Disclosure: Marko-
vian). For any δ P p0, 1q, with probability 1 ´ δ, the per-
stage disclosure regret of UCBVI with Bernstein-Freedman
bonuses (Azar et al., 2017, bonus 2) on the augmented
MDP is bounded by:

RPSpUCBVI, T q ď 34H rL
?
SAT2A`2500H4S2A22ArL2,

where rL “ logp5H2S2AAT {δq. In particular, for T ě

ΩpH6S3A323Aq and selecting δ “ 2A{T , we have:

E rRPSpUCBVI, T qs ď rO
´

H
?
SAT2A

¯

.

Proof. The proof is an application of (Azar et al., 2017,
Theorem 2), where we consider the state space cardinality
S2A of the augmented MDP and the stage-dependent tran-
sition probabilities (equivalent to increasing the state space
cardinality by a multiplicative factor of H).

The regret guarantees of Theorem 4.1 are clearly unsatisfac-
tory due to the presence of the exponential dependence on
the cardinality of the action space A. In the following, we
show that such an exponential dependence is unavoidable
when the action availability follows a Markovian process.

Lower Bound. The following theorem presents the lower
bound on the Markovian per-stage disclosure regret.

Theorem 4.2 (Lower Bound – Per-stage Disclosure: Marko-
vian). For any algorithm A, there exists an instance of
Sleeping MDP with per-stage disclosure and Markovian
action availability such that, for T ě ΩpHSA2Aq and
H ě ΩpAq, the per-stage disclosure policy regret satisfies:

E rRPS pA, T qs ě Ω
´

H
a

SAT2A{2
¯

.

Proof Sketch. The instances are made of two parts (see Fig-
ure 3). First, every instance has an A-ary tree MDP as
in (Domingues et al., 2021), where all actions are available.
Then, we attach a partial sleeping lattice to every leaf, in
which the state si does not change, and whenever an action
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A-ary Tree
(Domingues et al., 2021)

Sleeping Lattice
(ours)

s`s´

sisi

sisisisisisi

sisisisi

si

srsw

aw

@a ‰ aw

a1 a2 a3 a4

a1 a2 a3 a4

a1 a2 a3 a4

a2 a3 a4 a1 a3

a4
a1 a2

a4
a1 a2

a3

a1{2{3a1{2{4a1{3{4a2{3{4

a1{2a1{3a1{4a2{3a2{4a3{4

a1{2{3{4a1{2{3{4

a1{2{3{4a1{2{3{4a1{2{3{4

a1{2{3{4

1
2

1
2

1
2

´ε 1
2

`ε

a`a´

B˚

Figure 3. Instances used in the proof of Theorem 4.2. Available
actions are reported next to the nodes.

ah is played, it gets removed from the next set of available
actions, i.e., Ah`1psiq “ Ahpsiqztahu. This happens for
A{2 times, until we reach the largest layer of the lattice, i.e.,
the one with

`

A
A{2

˘

« 2A{2 nodes. At this point, whatever
action is played, the next action availability set will be a
singleton either containing a` or a´ with equal probability.
a` (resp. a´) leads to an absorbing state with reward `1
(resp. ´1). Hard instances are constructed by electing a leaf
state s˚, an action a˚, a stage h˚, and an availability set B˚

(with |B˚| “ A{2) that increase by ε ą 0 the probability of
getting singleton ta`u in the next stage.

This lower bound, using a novel construction (i.e., the sleep-
ing lattice, Figure 3), shows that an exponential dependence
on A is unavoidable when there is temporal correlation
among the sets of available actions. Given this statistical
barrier, we next discuss a tractable scenario in which the
action availability is sampled independently at each stage.

5. Per-Stage Disclosure: Independent Case
We now discuss the scenario in which, at every stage, the
available action set Ak,h is sampled independently from
the past, i.e., Ak,h „ C ind

h p¨|sk,hq. The lack of a tempo-
ral structure allows removing the dependence of the value
functions on the available action sets, differently from the
augmented MDP of Section 4. Indeed, looking at the Bell-
man’s equation in the augmented MDP (line 3 of Algo-
rithm 5), we realize that C ind

h p¨|sq does not depend on B,
removing such a dependence from the state-action value
function rQ˚

hpps,Bq, aq, that, from now on, we will denote
as Q˚

hps, aq. Moreover, similarly to what has been done in

Algorithm 5: Sleeping VI for C “ CMarkov.

Input :Sleeping MDP M “
`

S,A, CMarkov, P,R,H, s
˘

1 rV ˚
H`1pps,Bqq “ 0, @s P S,B P PpAq

2 for h P tH,H ´ 1, . . . , 1u do
3 rQ˚

hpps,Bq, aq “ Rhps, aq`

Es1„Php¨|s,aq

”

EB1„CMarkov
h

p¨|s1s,a,Bq

”

rV ˚
h`1pps1,B1

qq

ıı

,

@s P S,B P PpAq, a P B

4 rV ˚
h pps,Bqq “ maxaPB Q˚

hpps,Bq, aq,
@s P S,B P PpAq

5 end
6 return rπ˚

h pps,Bqq P argmaxaPB
rQ˚
k,hpps,Bq, aq,

@s P S, B P PpAq, h P JHK

Algorithm 6: Sleeping VI for C “ C ind.

Input :Sleeping MDP M “
`

S,A, C ind, P,R,H, s
˘

1 V ˚
H`1psq “ 0, @s P S

2 for h P tH,H ´ 1, . . . , 1u do
3 Q˚

hps, aq “ Rhps, aq ` Es1„Php¨|s,aq

“

V ˚
h`1ps1

q
‰

,
@a P A, s P S

4 V ˚
h psq “ EB„C ind

h
p¨|sq

“

maxaPB Q˚
hps, aq

‰

, @s P S
5 end
6 return rπ˚

h ps,Bq P argmaxaPB Q˚
k,hps, aq,

@s P S, B P PpAq, h P JHK

Equation (4), it is convenient to introduce the value function
V ˚
h psq :“ EB„C ind

h p¨|sqr rV ˚
h ps,Bqs. Given these quantities,

to solve a SleMDP with independent availabilities, we resort
to a simpler value iteration approach (Algorithm 6).

Lower Bound. The following theorem provides a regret
lower bound, by reducing the considered scenario to an
MDP in which all actions are always available.

Theorem 5.1 (Lower Bound – Per-stage Disclosure: Inde-
pendent). For any algorithm A, there exists an instance
of SleMDPs with independent action availability with per-
stage disclosure such that, for T ě ΩpH2SAq, the per-
stage disclosure regret satisfies:

E rRPSpA, T qs ě Ω
´

H
?
SAT

¯

.

Proof Sketch. The formal proof is provided in Appendix C.
Similarly to Theorem 3.1, the proof directly follows from
that of (Domingues et al., 2021, Theorem 9). We have to
lower bound the regret on the worst instance of SleMDPs
with independent per-stage disclosure action availability.
Since the SleMDPs with independent per-stage action avail-
ability are a generalization of MDPs (an MDP is a SleMDP
where C ind

h pA|sq “ 1, @s P S, h P JHK), the regret lower
bound for MDPs holds for SleMDPs too.

Algorithm. To efficiently learn in this setting, we propose
an algorithm that extends UCBVI (Azar et al., 2017) with the

7



Sleeping Reinforcement Learning

Algorithm 7: Sleeping UCBVI (S-UCBVI).

1 Initialize: N0,hps, a, s1
q “ 0, N0,hps, aq “ 0,

2 N0,hpsq “ 0, N0,hps,Bq “ 0,
3 @ps, a, s1, h,Bq P S ˆAˆS ˆ JHK ˆPpAq

4 pQ0,hps, aq “ H ´ h ` 1, @ps, a, hq P S ˆ A ˆ JHK
5 for k P JKK do
6 //Compute pVk,¨p¨q, pQk,¨p¨, ¨q for episode k

7 Estimate pPk,hps1
|s, aq as in Eq. (2)

8 Estimate pC ind
k,hpB|sq as in Eq. (5)

9 Initialize pVk,H`1psq “ 0, @s P S
10 for h “ tH,H ´ 1, . . . , 1u do
11 for s P S do
12 Compute pQk,hps, aq,@a P A, as in Eq. (6)
13 Compute pVk,hpsq as in Eq. (7)
14 end
15 end
16 //Play optimistic for episode k
17 Agent observes state sk,1
18 for h P JHK do
19 Agents observes action set Ak,hpsk,hq

20 Agent plays ak,h P argmax
aPAk,hpsk,hq

pQk,hpsk,h, aq

21 Environment returns rk,h and sk,h`1

22 Increment counters
23 end
24 end

estimation of the action availabilities C ind
h p¨|sq. Sleeping

UCBVI (S-UCBVI, Algorithm 7) is an optimistic algorithm
where the key innovation is using two bonuses, one for
the state-action value functions pQk,hps, aq (as for UCBVI,
to handle uncertainty on pP ) and one for the state value
functions pVk,hpsq (to handle uncertainty on pC). We estimate
the transition model as in Equation (2) (line 7) and we keep
an estimate of the action availability as follows (line 8):

pC ind
k,hpB|sq “

Nk,hps,Bq

Nk,hpsq
, (5)

where Nk,hpsq is the number of times state s is visited at
stage h and Nk,hps,Bq is the number of times we observe ac-
tion availability B. Then, we perform an optimistic value it-
eration (lines 9-15) to obtain the optimistic estimate pVk,hpsq

and pQk,hps, aq by means of two additive optimistic bonuses.
Going backward from h “ H , we compute pQk,hps, aq as:

pQk,hps, aq “ min
!

pQk´1,hps, aq, (6)

Rhps, aq ` bQk,hps, aq `
ÿ

s1PS

pPk,hps1|s, aq pVk,h`1ps1q

)

,

where bQk,hps, aq is the exploration bonus to account for the

uncertainty on the transition model estimate pP :

bQk,hps, aq :“

d

4LpVk,hps, aq

Nk,hps, aq
`

7HL

3pNk,hps, aq ´ 1q

`

g

f

f

e

4Es1„ pPk,hp¨|s,aq
rb

Q

k,h`1ps1qs

Nk,hps, aq
,

where pVk,h “ Vars1„ pPk,hp¨|s,aq
r pVk,h`1ps1qs is the empir-

ical variance of the next-state estimated value function,
b
Q

k,h`1ps1q “ mint29002H3S3A2AL3{Nk,h`1ps1q, H2u

is the additional bonus term, and L “ logp80HS2A2AT {δq.
Then, we compute the optimistic value function pVk,hpsq as:

pVk,hpsq“
ÿ

BPPpAq

pC ind
k,hpB|sqmax

aPB
pQk,hps,aq`bVk,hpsq, (7)

where bVk,h is a bonus accounting for the uncertainty on the
action set availability defined as:

bVk,hpsq :“

d

4LpQk,hpsq

Nk,hpsq
`

7HL

3pNk,hpsq ´ 1q

`

g

f

f

e

4EB„ pC ind
k,hp¨|sq

rb
V

k,hps, πk,hps,Bk,hqqs

Nk,hpsq
,

where pQk,hpsq “ VarB„ pC ind
k,hp¨|sq

r pQk,hps, πk,hps,Bqqs, and

b
V

k,hps, aq “ mint13502H3S3A2AL3{Nk,hps, aq, H2u is
an additional bonus. Finally, the algorithm plays an action
greedily w.r.t. pQk,hps, aq (lines 17-23).

We provide the regret upper bound of S-UCBVI for per-
stage disclosure and independent availabilities.

Theorem 5.2 (Regret Upper Bound S-UCBVI with in-
dependent availability and per-stage disclosure). For any
δ P p0, 1q, with probability 1´δ, the per-stage disclosure re-
gret of S-UCBVI on any SleMDP with per-stage disclosure
independent action availabilities is bounded by:

RPSpS-UCBVI, T q ď512H
?
SATLG

` 4982H6S3A2AL2G,

where L “ logp80HS2A2AT {δq and G “ logpHSAT q.
In particular, for T ě ΩpH10S5A422Aq and selecting δ “

2A{T , we have:

E rRPSpS-UCBVI, T qs ď rO
´

H
?
SAT

¯

.

Proof Sketch. The proof is provided in Appendix D and
extends (Azar et al., 2017, Theorem 2). The key differ-
ence is the use of two bonus terms to ensure the optimism
of both pVk,h and pQk,h due to the estimation of the action
availabilities pC ind

k,h and of the transition model pPk,h. Given
r∆V
k,h“ pVk,h´V πk

h and r∆Q
k,h“ pQk,h´Qπk

h , we notice a re-

cursive dependence, that we unfold since r∆V can be derived
from r∆Q and r∆Q is obtained by upper-bounding r∆V as:

r∆V
k,hďbVk,h`εQk,h`4H22AL{Nk,h` r∆Q

k,h,
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Per-stage Disclosure Per-episode Disclosure

Lower Bound Upper Bound Lower Bound Upper Bound

Independent
Ω

´

H
?
SAT

¯

T ě ΩpH2SAq

Theorem 5.1

rO
´

H
?
SAT

¯

T ě ΩpH10S5A422Aq

Theorem 5.2 Ω
´

H
?
SAT

¯

T ě ΩpH2SAq

Theorem 3.1

rO
´

H
?
SAT

¯

T ě ΩpH6S3Aq

Theorem 3.2
Markovian

Ω
´

H
?
SAT2A{2

¯

T ě ΩpHSA2Aq

Theorem 4.2

rO
´

H
?
SAT2A

¯

T ě ΩpH6S3A323Aq

Theorem 4.1

Table 1. Summary of the results.

where εQk,h is a martingale difference sequence that leads
to a lower-order term. As such, we upper bound the two
quantities as done in Lemma 3 of (Azar et al., 2017) at the
cost of a multiplicative e constant, avoiding any exponential
dependency on A in the higher-order terms. Then, extending
the rationale of (Azar et al., 2017), via backwards induction,
we show that the empirical variance is small enough that
the additional bonuses b

V

k,h and b
Q

k,h guarantee that pVk,h and
pQk,h are indeed optimistic. This is done by deriving an
upper bound on pQk,hps,aq´Q˚

hps,aq in the order of:

pQk,hps,aq´Q˚
hps,aqďmintOpH3S3A2AL3{Nk,hps,aqq,Hu.

Then, we use the latter result to derive an upper bound to
pVk,hpsq´V ˚

h psq in the order of:

pVk,hpsq´V ˚
h psqďmintOpH3S3A2AL3{Nk,hpsqq,Hu.

Subsequently, we use these inequalities to show that pQk,hě

Q˚
h and pVk,hěV ˚

h hold, thus, demonstrating the optimism.
Finally, we derive the regret bound by combining the terms
in the upper bound of r∆V

k,h, observing that, when applying
the pigeonhole principle, we consider all the actions in A as
available, as this provides the worst-case allocation.

This result shows that for a large enough T , the regret
suffered by S-UCBVI is of the same order as that of
UCBVI-BF (Azar et al., 2017, Theorem 2), matching the
lower bound for standard RL, up to logarithmic terms. Thus,
the need for estimating the action availability C ind, that is a
distribution over PpAq, results in a minimum value of T that
scales exponentially with A. Nevertheless, no exponential
dependence on A is present in the leading term.

6. Discussion and Conclusions
We summarize the results presented in this paper in Table 1.
We motivated the introduction of approaches aware of the
action availability in opposition to an LLC since they allow
learning better-performing behaviors. We illustrated this in
Example 1. Now, we formally prove that this is the case.

Per-episode ě Per-stage. We restrict to stochastic avail-
abilities sampled independently at every stage, i.e., via C ind.
Indeed, in this case, we can imagine availabilities Ak,hpsq

to be pre-sampled for every k P JKK and ps, hq P S ˆ JHK.
In the per-episode disclosure, Ak,hpsq is revealed at the
beginning of episode k, while in the per-stage disclosure
Ak,hpsq is revealed only when, at episode k, we reach state
s at stage h. This observation allows concluding that the
expected optimal performance in the per-episode disclosure
is superior to that of the per-stage disclosure:

ErV ˚
k s “ E

„

max
πkPΠk

V πk
1 psq

ȷ

loooooooooooooooomoooooooooooooooon

Per-episode

ě max
πPΠ

V π
1 psq “ V ˚

1 psq
looooooooooomooooooooooon

Per-stage

,

where the expectation is taken w.r.t. the randomness of
Ak,hpsq, and where Πk and Π are defined in Sections 3
and 4, respectively, and the inequality follows from Jensen’s.

Per-stage ě LLC. The LLC can be regarded as
a (possibility stochastic) function that, given an un-
available action ak,h R Ak,h sampled from pol-
icy πhp¨|sk,hq, overrides it with an available action
a1
k,h P Ak,h sampled according to some strategy

ρLLCh p¨|sk,h, ak,h,Ak,hq. Thus, the overall effect of the
LLC is equivalent to playing a policy rπLLC

h p¨|sk,h,Ak,hq “
ř

aPA ρLLCh p¨|sk,h, a,Ak,hqπhpa|sk,hq that belongs to the
policy space Π on which we optimize in the per-stage dis-
closure case. Thus, the performance of the LLC cannot be
larger than that of the optimal policy of the per-stage case
(i.e., V rπLLC

1 psq ď maxπPΠ V π
1 psq “ V ˚

1 psq).

Future Works. Interesting future research directions in-
clude investigating action availability structures that are
more general than the independent case while preserving
statistical tractability. Moreover, it is of interest to devise
instance-dependent features to characterize the complexity
of an instance in the regret bounds based on the characteris-
tics of action availability.
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A. Example

Fs pr“´2q

F
pr“

0q

Sv pr“´1q

Sf pr“´2q

F
pr“

0q

A

B

C

Figure 4. Illustrative Sleeping MDP.

In this appendix, we discuss an example of Sleeping MDP, analyze the two disclosure scenarios described in the paper
(i.e., per-episode and per-stage disclosure, indicated with PE and PS, respectively), and the case in which we do not have
information about the available actions, making use of a low-level controller (LLC) to correct taken actions that are not
available, generating an equivalent MDP as depicted in Figure 1a.

Consider the Sleeping MDP depicted in Figure 4, where the goal is to go from initial state A to the absorbing state C. To
reach this goal, we have two paths, the first (the one below) is safe but costly, the second one is unsafe and may be not always
available, but has no cost. More formally, we consider an undiscounted finite-horizon Sleeping MDP with initial state A, and
absorbing state is C (we assume infinite horizon here since there is probability 1 of reaching state C). To reach the absorbing
state, we have two possible paths, which can be chosen using deterministic actions. The first one is the one following action
Fs (i.e., forward safe), which deterministically leads to the final state with total reward ´2. The second path, instead, leads
to the final state through state B. We assume we can always take action F (i.e., forward) in state A and deterministically
reach B without costs (r “ 0). Then, when we are in B, the next forward action may be available or not, and we assume it is
available with probability p (formally PrpF P AhpBqq “ p, for every stage h). If F is not available, we can voluntarily stay
in B and wait (i.e., play action Sv), obtaining a reward of ´1, or try to go anyway. In state B, there is also another action Sf

(i.e., stay forced), that makes the agent remain in state B and receive a reward of ´2. This latter action will be employed by
the LLC to override forbidden actions (i.e., the attempt to play F in state B when it is not available).

We now compute the value functions of this Sleeping MDP for the three scenarios under analysis.

Sleeping MDP with per-episode disclosure. We first analyze the optimal value function V ˚
PEpAq in state A for the

per-episode disclosure scenario. We recall that in this case, we knew the action was available at the beginning of the episode.
It is easy to observe that, considering h “ 1 as the moment in which the first decision is made, the path through B will be
convenient if at h “ 2 or h “ 3 the action F will be available in state B (if action F will be available for the first time in
h “ 4 or later, we can choose the safe path).8 Knowing that such action will be available with probability p, the probability
that it will be available at time h “ 2 is indeed p, while the probability that will be not available in h “ 2 but will be
available in h “ 3 is p1 ´ pqp. Given that, the value function for state A is:

V ˚
PE,1pAq “ 0 ¨ p

loomoon

f available
in h“2

´1 ¨ ppp1 ´ pqq
loooomoooon

f available in h“3
and not in h“2

´2 ¨ p1 ´ pp ` pp1 ´ pqqq
looooooooooomooooooooooon

Otherwise

.

Sleeping MDP with per-stage disclosure. We now analyze the optimal value function V ˚
PS,1pAq in state A for the per-stage

disclosure scenario, where we do not know the actual action availability in advance. Given the simplicity of the problem, we

8For the sake of precision, it is not relevant if action F is available in state B when h “ 1, because we are not in such a state and we
cannot play it.
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Figure 5. Optimal value functions V ˚
: pAq for : P tPE, PS, LLCu.

analyze value functions from the final state backward. We first observe how, for absorbing state C, we have V ˚
PS,hpCq “ 0

for every h P N. Then, we move to state B, and we trivially observe that the optimal policy is to go to state C if possible
(i.e., if action F is available), and use action Sv otherwise. The value function for state B is:

V ˚
PS,hpBq “ pp0 ` V ˚

PS,h`1pCqq ` p1 ´ pqp´1 ` V ˚
PS,h`1pBqq.

Since V ˚
PS,hpBq “ V ˚

PS,h`1pBq, by solving for V ˚
PS,hpBq, we get:

V ˚
PSpBq “ ´

1 ´ p

p
.

Given that, in state A the optimal policy will choose the best path in expectation, its value function will be:

V ˚
PS,1pAq “ max

"

´2,´
1 ´ p

p

*

.

Sleeping MDP as and MDP with LLC. We finally suppose that we want to handle this Sleeping MDP as if it were a
standard MDP with stochastic actions and rewards depending also on the landing state. We start as before by observing that
V ˚

LLCpCq “ 0. Then, we can reason about state B. It is clearly visible that we have to try to go to state C; otherwise, we will
continue to pay the cost of staying in B (for a sufficiently large horizon). Given that, the expected value of this state is 0 if
we play action F and it is available, ´2 if we play it when it is not available. Formally:

V ˚
LLC,hpBq “ pp0 ` V ˚

LLC,h`1pCqq ` p1 ´ pqp´2 ` V ˚
LLC,h`1pBqq.

Since, V ˚
LLC,h`1pBq “ V ˚

LLC,hpBq we get:

V ˚
LLC,hpBq “ ´2

1 ´ p

p
.

As before, in state A, we can select the best action, leading to:

V ˚
LLC,1pAq “ max

"

´2,´2
p1 ´ pq

p

*

.

Comparison of the Results. Figure 5 shows the value functions for the three cases for all the values of p P r0, 1s. We can
observe how, as supported by the intuition, for every p P r0, 1s, it is always better to know the action availability in advance
(V ˚

PEpAq ě V ˚
PSpAq), as we have more information and we can take better decisions. This implies that the two notions of

regret must differ (given that the two optimal value functions will be different), in particular in terms of the comparator we
use, which should be appropriate and reachable. Finally, we observe that the performance of the equivalent MDP integrating
the low-level controller is the worst, as expected.
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B. Related Works
In this appendix, we summarize the relevant literature for this work. We start by presenting an overview of the fundamental
works in the sleeping MAB literature, as this problem has never been faced in the RL scenario. Then, we introduce works
on invalid action masking in RL. Finally, we summarize the main results on regret bounds for standard RL.

Sleeping MAB. (Kleinberg et al., 2008; 2010) are the seminal works for the Sleeping MAB setting. In their work, the
authors study both the full and partial information settings, considering both the stochastic and adversarial reward models
and adversarially chosen action sets. (Kanade et al., 2009) presents the first polynomial time algorithm for MAB with
adversarial rewards and stochastic action sets. In the same scenario, (Saha et al., 2020) improves the performance, keeping
the computational complexity polynomial. (Kanade & Steinke, 2014) presents the first polynomial time algorithm bandits
with both adversarial rewards and action sets, and (Nguyen & Mehta, 2024) achieves near-optimal regret bounds in this
scenario. (Chatterjee et al., 2017) studies the setting with adversarial action sets and Bernoulli rewards. (Cortes et al., 2019)
extends the Sleeping framework to consider graph feedback. (Gaillard et al., 2023) studies different notions of regret in the
sleeping MAB setting, and discusses their relation.

Invalid Action Masking for RL. Several works consider the possibility of having not all actions available in all the
states (Vinyals et al., 2017). This deterministic masking operation can be done over several types of algorithms such as
policy gradient solutions (Huang & Ontañón, 2022) and state-of-the-art deep RL algorithms such as DQN (Mnih et al., 2013).
However, in all these works, given a state s, we have a deterministic mapping to the action availability (i.e., C : S Ñ PpAq).
In this work, instead, we consider way more challenging scenarios, as we have, given a state, probability distribution over the
available action sets (i.e., C : S Ñ ∆pPpAqq), also in the per-episode disclosure scenario, that can be seen as a stochastic
generalization of action masking.

Minimax Regret Bounds for RL. (Auer et al., 2008; Jaksch et al., 2010) present the first minimax lower bound in the order
of Ωp

?
DSAT q for average reward MDPs with stationary transition probabilities where D is the diameter of the MDP.910

(Domingues et al., 2021) generalize this result by providing a standard proof framework for episodic MDPs and demonstrate
a lower bound in the order of ΩpH

?
SAT q with stage-dependent transitions and Ωp

?
HSAT q with stage-independent

ones. From the algorithmic perspective, (Jaksch et al., 2010) propose UCRL2, which enjoys rOpDS
?
AT q regret with

stage-independent transition. (Azar et al., 2017) propose UCBVI, which enjoys rOp
?
HSAT q regret with stage-independent

transitions and rOpH
?
SAT q with stage-dependent ones.11 (Zhang et al., 2024) theoretically improves the result of (Azar

et al., 2017), even if preserving the same (optimal, up to logarithmic factors) rate, by reducing the requirement for the
minimum T needed in order to match the lower bound.

C. Omitted Proofs of the Lower Bounds
C.1. Proof of Theorem 5.1

Theorem 5.1 (Lower Bound – Per-stage Disclosure: Independent). For any algorithm A, there exists an instance of SleMDPs
with independent action availability with per-stage disclosure such that, for T ě ΩpH2SAq, the per-stage disclosure regret
satisfies:

E rRPSpA, T qs ě Ω
´

H
?
SAT

¯

.

Proof. This proof closely follows the one of (Domingues et al., 2021, Theorem 9). In order to demonstrate the lower bound
for Sleeping MDPs with per-stage disclosure in the case of independent action availability, we first modify the class of hard
MDP instances provided in (Domingues et al., 2021, Section 3.1), and then we follow similar derivations to the original
proof, thus reporting only the relevant modifications.

Definition of the Sleeping MDPs class. We start by modifying the class CH,ε1 provided in (Domingues et al., 2021) to
transform it into a specific class of Sleeping MDPs. As in the original proof, the SleMDPs all have three special states: a

9This result considers a different setting w.r.t. the one of finite-horizon MDPs considered in this work. However, we can generalize this
result by observing that H “ OpDq, see (Domingues et al., 2021).

10(Bartlett & Tewari, 2009) present a variant of the lower bound which does not hold in general, see (Jaksch et al., 2010; Osband &
Van Roy, 2016) for a detailed discussion.

11The result of (Azar et al., 2017) is derived with stage-independent transition. However, we can derive the result by considering a
fictitious MDP with augmented state space S ˆ JHK.
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waiting state sw, a good state sg , and a bad state sb. The remaining S ´ 3 states are arranged in a A-ary tree of depth d ´ 1.
The agent starts each episode in sw, and can select to remain in sw by playing an action aw up to stage H , after which it is
forced to transition to state sroot, which is the root of the A-ary tree. For every triplet:

ph˚, l˚, a˚q P t1 ` d, . . . ,H ` du ˆ L ˆ Aztawu,

we define a Sleeping MDP MS,ph˚,l˚,a˚q as follows. The action availabilities in sw are defined as:

C indpA|swq “ 1, @h P JHK

meaning that all actions are available in the waiting state, and the transition probabilities from sw are defined as:

Phpsw|s “ sw, ak,h “ awq “ 1th ď Hu,

Phpsroot|s “ sw, ak,h “ awq “ 1 ´ Phpsw|s “ sw, ak,h “ awq,

Phpsroot|s “ sw, ak,h “ aq “ 1,@a ‰ aw, h P JHK.

Let I “ Szttswu Y L Y tsg, sbuu be the set of internal nodes of the A-ary tree, then the action availabilities inside the tree
are defined as:

C indpA|sq “ 1,@s P I.

The transition probabilities for any state in the tree are deterministic: playing the a-th action leads deterministically to the
a-th child node of the current node. For every leaf node sl P L, we define the action availabilities such that:

Prpaw P Ak,hpsqq “ 1, @s P L, k P JKK, h P JHK,

Prpa P Ak,hpsqq “
ÿ

BPPpAq s.t. aPB

C indpB|sq “ c P r0, 1s, @s P L, a P Aztawu, k P JKK, h P JHK.

As such, at least one action is guaranteed to be available at every stage of every episode, and every action (except aw) is
available with probability c. The leaf nodes are the only nodes which can transition to sg and sb, and they do so according to
the following transition probabilities:

Phpsg|si, aq “
1

2
` ∆ph˚,l˚,a˚qph, siaq,

Phpsb|si, aq “ 1 ´ Phpsg|si, aq,

where ∆ph˚,l˚,a˚qph, si, aq “ ε11tph, i, aq “ ph˚, l˚, a˚qu. Finally, we also define a reference Seeping MDP MS,0 which
has the same structure as the SleMDPs defined above, but with ∆0ph, si, aq “ 0. The rewards are defined as:

Rps, a, hq “ 1ts “ sg, h ě H ` d ` 1u,@a P A.

Regret of an algorithm A in MS,ph˚,l˚,a˚q. Following the same reasoning as in (Domingues et al., 2021), it is clear to see
that the learner is required to learn the optimal trajectory, which enables it to play action a˚ in leaf node sl˚ at stage h˚.
However, this trajectory is only achievable with probability c, due to the availability of action a˚ in node sl˚ . Notice that, if
the optimal trajectory is not available in an episode, then the learner does not incur in any regret, as neither the agent nor the
optimal policy can achieve it. We now follow the proof of Th. 9 of (Domingues et al., 2021), adapting to the Sleeping MDP
setting. We report only the relevant modifications. Let Sk,h and Ak,h be the random variables that represent, respectively,
the state occupied and the action selected at stage h of episode k. We start by observing that the average reward gathered by
an algorithm A is again defined as:

Eph˚,l˚,a˚q

«

K
ÿ

k“1

H
ÿ

h“1

RpSk,h, Ak,h, hq

ff

“ pH ´ H ´ dq

K
ÿ

k“1

PrpSk,H`d`1 “ sgq.

For any stage h P J1 ` d,H ` dK, we can rewrite Eq. (7) of (Domingues et al., 2021) as:

Pr
ph˚,l˚,a˚q

pSk,h`1 “ sgq “ Pr
ph˚,l˚,a˚q

psk,h “ sgq `
1

2
Pr

ph˚,l˚,a˚q
pSk,h P Lq`

` 1th “ h˚u Pr
ph˚,l˚,a˚q

pSk,h “ sl˚ , Ak,h “ a˚|a˚ P Ak,hq

“ Pr
ph˚,l˚,a˚q

psk,h “ sgq `
1

2
Pr

ph˚,l˚,a˚q
pSk,h P Lq`
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`
1

c
1th “ h˚u Pr

ph˚,l˚,a˚q
pSk,h “ sl˚ , Ak,h “ a˚q, (8)

where (8) is obtained by applying Bayes’ rule and observing that Prph˚,l˚,a˚qpa˚ P Ak,h|Sk,h “ sl˚ , Ak,h “ a˚q “ 1.
Following the proof, we obtain that the optimal value in any of the SleMDPs is ρ˚ “ pH ´ H ´ dp1{2 ` εqq{c. We can
then rewrite the suffered regret as:

RT pAq “ KpH ´ H ´ dqε

ˆ

1 ´
1

K
Eph˚,l˚,a˚qrZK,ph˚,l˚,a˚qs

˙

,

where ZK,ph˚,l˚,a˚q “
řK

k“1 1tSk,h˚ “ sl˚ , Ak,h˚ “ a˚|a˚ P Ak,h˚ u. Observe that:

1

K
Eph˚,l˚,a˚qrZK,ph˚,l˚,a˚qs “

1

K

K
ÿ

k“1

Eph˚,l˚,a˚qr1tSk,h˚ “ sl˚ , Ak,h˚ “ a˚|a˚ P Ak,h˚ us

“
1

K

ÿ

k“1K

Pr
ph˚,l˚,a˚q

pSk,h˚ “ sl˚ , Ak,h˚ “ a˚|a˚ P Ak,h˚ q

“
1

K

K
ÿ

k“1

1

c
Pr

ph˚,l˚,a˚q
pSk,h˚ “ sl˚ , Ak,h˚ “ a˚q

“
1

cK
Eph˚,l˚,a˚qrNK,ph˚,l˚,a˚qs,

where NK,ph˚,l˚,a˚q is defined as in (Domingues et al., 2021). We can then bound the maximum regret over all possible
instances as:

max
ph˚,l˚,a˚q

RT pAq ě KpH ´ H ´ dq ε

¨

˝1 ´
1

HLAK

ÿ

ph˚,l˚,a˚q

Eph˚,l˚,a˚qrZK,ph˚,l˚,a˚qs

˛

‚

ě KpH ´ H ´ dq ε

¨

˝1 ´
1

HLAKc

ÿ

ph˚,l˚,a˚q

Eph˚,l˚,a˚qrNK,ph˚,l˚,a˚qs

˛

‚.

Following the derivation, we finally obtain:

max
ph˚,l˚,a˚q

RT pAq ě KpH ´ H ´ dqε

˜

1 ´
1

HLAc
´

?
2ε

?
HLAK

HLAc

¸

.

Clearly, as c appears only at the denominator of negative terms, and c P r0, 1s by definition, the value of c that maximizes
the regret is c “ 1. Intuitively, given a finite number of episodes, and given that the agent does not pay any regret if the
optimal trajectory is not available, the case in which the agent can pay the maximum regret is that in which the optimal
trajectory is available in every episode. Finally, we conclude the proof by plugging in the same optimal values for ε and H ,
obtaining a lower bound of ΩpH

?
SAT q.

C.2. Proof of Theorem 4.2

Theorem 4.2 (Lower Bound – Per-stage Disclosure: Markovian). For any algorithm A, there exists an instance of Sleeping
MDP with per-stage disclosure and Markovian action availability such that, for T ě ΩpHSA2Aq and H ě ΩpAq, the
per-stage disclosure policy regret satisfies:

E rRPS pA, T qs ě Ω
´

H
a

SAT2A{2
¯

.

Proof. We start the proof by describing the instance. The goal of this proof is to show that an exponential component in the
regret is not avoidable if we consider Markovian action availability and per-stage disclosure.

Construction of the Instances

To build the “hard instances” of SleMDPs we need in order to get the lower bound exponential in the number of actions, we
consider two building blocks, as depicted in Figure 6. In these instances, we consider H ą A

2 ` 2 ` logA S, we consider
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Figure 6. Instance used in the lower bound construction for C “ CMarkov with per-stage disclosure.
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the state set to be composed of S states and 3 additional states: sw, s`, and s´ which we will define later. Moreover, we
consider the action set to be composed by A ` 2 action, with A even, where we have 2 special actions a` and a´ we will
define later.

A-ary Tree. The first building block is the tree structure instance proposed by (Domingues et al., 2021), depicted in the
grey area in Figure 6. In this structure, we have a starting state sw from which we have to exit at the proper moment, which
is designed to get the proper dependency on the horizon H . Then, we have a A-ary tree structure that we consider in the
same way as (Domingues et al., 2021). For this part, we consider that all the actions are available in all the states. Moreover,
we consider deterministic transitions. We refer the reader to (Domingues et al., 2021) for further details. This construction
gives us a lower bound in the order of Ω

`

H
?
SAT

˘

and, given that we consider full action availability, we are in the same
scenario as for the original paper, so we avoid to report all the derivation, and we refer the reader to (Domingues et al., 2021,
Theorem 9) for the analysis.

Sleeping MDP Lattice. The second building block is a lattice structure to generate the hard instance in terms of Markovian
action availability sets. In every leaf of the A-ary tree, we add a lattice of depth A{2 designed as follows. We start, as
depicted in Figure 6, in a generic leaf state si where we will have all the actions available to build the lattice. In the example,
the available actions are reported next to the state. When we are in the lattice and we make an action ai, such an action will
be no more available in the next stage, while we remain in the same si P S , so the only evolution we trigger is a deterministic
evolution of the available action set B which will become Bztaiu. We stop the construction of the lattice when we are in the
layer of the lattice with the maximum extension. It is simple to verify that in such a layer, we have n “

`

A
A{2

˘

different
availability combinations. Then, at step A

2 ` 1 in the lattice, we have that the different instances become distinguishable, and
we will have an action set i˚ P JnK which is the optimal one. We call mi˚ the instance in which i˚ is the optimum. Now, if
we are in the optimal action availability set, we have probability 1

2 ` ε to remain in si and have the chance of playing action
a`, and we have probability 1

2 ´ ε to remain in si and having available only action a´. Then, if we play a` in si in the
proper stage h P JHK, we get reward 1; otherwise we get 0. If i P JnK, i ‰ i˚, we have the same probability of going to
good and bad action set, i.e., 1

2 .

Given that, an instance is characterized by a tuple ps˚, h˚, a˚,B˚q. While the first 3 terms are the same of (Domingues
et al., 2021), the last term is the optimal available action set, i.e., the one allowing us, if properly triggered, to play a` and
get reward 1. B˚ is the set corresponding to i˚ P JnK.

Analysis

Given that we already know the result of the first building block (i.e., the A-ary tree), we dedicate our efforts to getting the
exponential dependency on A, then combining the results together just requires some straightforward algebra.

Fix i˚ P JnK. We call NipKq the number of times we observed i over K episodes. We define i´ P JnK the ones such that:

i´ P argmin
iPJnKzti˚u

Emi˚ rNipKqs.

Given that, since we are in a loop-free structure, we know that:
ÿ

iPJnKzti˚u

Emi˚ rNipKqs ď K,

for the so-called “averaging hammer” we have:

Emi˚ rNi´ pKqs ď
K

n ´ 1
.

We now consider instance mi´ , which is defined similarly to i˚ but this time the best available action set, i.e., the one with a
probability of activating a` equal to 1

2 ` 2ε, is i´. We highlight that in this instance we have a multiplicative term 2 before
ε.

We can now compute the regret and optimize the value of ε. We use the notation RT pmq to indicate the regret after T
interactions on instance m:

max tRT pmi˚ q, RT pmi´ qu ě
1

2
pRT pmi˚ q ` RT pmi´ qq

ě
∆K

4

ˆ

Pr
mi˚

ˆ

Ni˚ pKq ď
K

2

˙

` Pr
mi´

ˆ

Ni˚ pKq ě
K

2

˙˙
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ě
∆K

8
exp

ˆ

E
mi˚

rNi´ pKqs DKL

ˆ

1

2
` 2ε,

1

2
` ε

˙˙

(9)

ě
∆K

8
exp

ˆ

´
Kε2

n ´ 1

˙

, (10)

where ∆ is the value function we will compute later, line (9) is the Bretagnolle-Huber inequality (see Lattimore & Szepesvári,
2020, Theorem 14.2), and line (10) holds for sufficiently small ε.

We can now compute ∆:

V ˚
mi˚

“

ˆ

1

2
` ε

˙

¨ 1 `

ˆ

1

2
´ ε

˙

¨ 0 “ ε

V ˚
mi´

“

ˆ

1

2
` 2ε

˙

¨ 1 `

ˆ

1

2
´ 2ε

˙

¨ 0 “ 2ε

so we have ∆ “ ε.

Now we have to choose ε and we choose ε “

b

n´1
K and we get:

max tRT pmi˚ q, RT pmi´ qu ě
εK

8
exp

ˆ

´
Kε2

n ´ 1

˙

ě
e´1

8

a

Kpn ´ 1q

ě Ω
´

a

K2A{2
¯

,

where the last inequality is derived after having observed that:

n “

ˆ

A

A{2

˙

ě

ˆ

A

A{2

˙A{2

ě 2A{2

Now, applying the same reasoning as (Domingues et al., 2021) we can retrieve the multiplicative factor Ω
`

H3{2
?
SA

˘

,

leading to a bound in the order of Ω
´

H
?
SAT2A{2

¯

. This concludes the proof.

D. Proof of Theorem 5.2
In this appendix, we provide the formal proof of Theorem 5.2. The proof follows the one of (Azar et al., 2017, Theorem 2)
and as such, some of the original lemmas which are used as is are reported to increase the readability of the proof.

D.1. Notation

We now collect the notation necessary for the understanding of the proof of Theorem 5.2.

Symbol Meaning
S State space
A Action space
P Transition distribution
C Action set availability distribution
R Reward function
H Length of the episode
K Total number of episodes
T Total number of steps
Tk Total number of steps up to episode k
S Cardinality of the state space
A Cardinality of the action space

19



Sleeping Reinforcement Learning

sk,h State occupied at stage h of episode k

a
πkpBq

k,h Action played at stage h of episode k under policy πk with action set B available
Nkps, aq Number of visits to state-action pair ps, aq up to episode k
Nkps, a, s1q Number of transitions to state s1 from state s after playing action a, up to episode k
Nk,hpsq Number of visits to state s at stage h up to episode k
Nk,hps, aq Number of visits to state-action pair ps, aq at stage h up to episode k
pPk Estimated transition distribution
pC Estimated action set availability distribution
bQ State-action value function exploration bonus
b
Q

k,hpsq mint 29002H3S3A2AL3

Nk,hpsq
, H2u

bV State value function exploration bonus
b
V

k,hps,Bq mint 13502H3S3A2AL3

N 1
i,jpsi,j ,a

πipBq

i,j q
, H2u

πk Policy played during episode k
π˚ Optimal policy
Q˚

h State-action value function of the optimal policy
Qπ

h State-action value function following policy π
pQk,h Optimistic state-action value function
V ˚
h Value function of the optimal policy at stage h

V π
h Value function under policy π at stage h

pVk,h Optimistic estimator of the optimal value function at stage h of episode k
∆V

k,hpsq Regret in state s, at stage h of episode k, following policy πk

r∆V
k,hpsq Pseudo-regret in state s, at stage h of episode k, following policy πk

∆Q
k,hps, aq Q˚

hps, aq ´ Qπk

h ps, aq

r∆Q
k,hps, aq pQk,hps, aq ´ Qπk

h ps, aq

E Concentration inequalities event
Ωk,h Optimism event
εV , εV , ξV , ξ

V
, εQ, εQ Martingale differences sequences

rkstyp, rkstyp,s, rkstyp,s,a Sets of typical episodes
Hk,h History of the interactions up to, and including, stage h of episode k, not including the

observed available action set Bk,h

Hk,h,B History of the interactions up to, and including, stage h of episode k, including the observed
available action set Bk,h

L Logarithmic term logp80HS2A2AT {δq

G Logarithmic term logpHSAT q

Vπk

h Next-state variance of V πk

V˚
h Next-state variance of V ˚

pVk,h Empirical next-state variance of pVk,h

pV˚
k,h Empirical next-state variance of V ˚

Qπk

h Variance of Qπk

Q˚
h Variance of Q˚

pQk,h Empirical variance of pQk,h

pQ˚
k,h Empirical variance of Q˚

Table 2: Table of notation

We now restate the definitions of the Martingale Difference Sequences:

εVk,h :“
´

P r∆V
k,h`1

¯

psk,h, a
πkpBk,hq

k,h q ´ r∆V
k,h`1psk,h`1q,
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εVk,h :“
ÿ

s1PS
P ps1|sk,h, a

πkpBk,hq

k,h q

g

f

f

e

Its1 P rssk,hu

Nkpsk,h, a
πkpBk,hq

k,h qP ps1|sk,h, a
πkpBk,hq

k,h q

r∆V
k,h`1ps1q

´

g

f

f

e

Itsk,h`1 P rssk,hu

Nkpsk,h, a
πkpBk,hq

k,h qP ps1|sk,h, a
πkpBk,hq

k,h q

r∆V
k,h`1psk,h`1q,

ξVk,h :“
ÿ

BPPpAq

C indpB|sk,hq

˜

ÿ

s1PS
P ps1|s, a

πkpBq

k,h q r∆V
k,h`1ps1q

¸

´ r∆V
k,h`1psk,h`1q,

ξ
V

k,h :“
ÿ

BPPpAq

C indpB|sk,hq

˜

ÿ

s1PS
P ps1|s, a

πkpBq

k,h q

d

Its1 P rssk,hu

Nkpsk,h, a
πkpBq

k,h qP ps1|sk,h, a
πkpBq

k,h q

r∆V
k,h`1ps1q

¸

´

d

Itsk,h`1 P rssk,hu

Nkpsk,h, a
πkpBq

k,h qP ps1|sk,h, a
πkpBq

k,h q

r∆V
k,h`1psk,h`1q,

εQk,h :“
´

C ind
r∆Q
k,h

¯

psk,hq ´ r∆Q
k,hpsk,h, a

πkpBk,hq

k,h q

εQk,h :“
ÿ

BPPpAq

C indpB|sk,hq

d

ItB P rBsk,hu

Nkpsk,hqC indpB|sk,hq
r∆Q
k,hpsk,h, a

πkpBq

k,h q

´

d

ItBk,h P rBsk,hu

Nkpsk,hqC indpBk,h|sk,hq
r∆Q
k,hpsk,h, a

πkpBk,hq

k,h q,

and of the variance terms:

Vπk

h ps, aq :“ Var
s1„P p¨|s,aq

rV πk

h ps1qs,

V˚
hps, aq :“ Var

s1„P p¨|s,aq
rV ˚

h ps1qs,

pVk,hps, aq :“ Var
s1„ pPkp¨|s,aq

rpVk,hps1qs,

pV˚
k,hps, aq :“ Var

s1„ pPkp¨|s,aq

rV ˚
h ps1qs,

Qπk

h psq :“ Var
B„C indp¨|sq

rQπk

h ps, πk,hps,Bqs ,

Q˚
hpsq :“ Var

B„C indp¨|sq
rQ˚

hps, π˚
hps,Bqqs,

pQk,hpsq :“ Var
B„ pC ind

k p¨|sq

r pQk,hps, πk,hps,Bqqs,

pQ˚
k,hpsq :“ Var

B„ pC ind
k p¨|sq

rQ˚
hps, π˚

hps,Bqqs.

For ease of notation, we will employ the following notation throughout the appendix. Let F : X Ñ ∆pY q be a probability
distribution over a set Y conditioned to a set X . Let pF : X Ñ ∆pY q be an estimator of F , and let G : X ˆ Y Ñ R be a
real-valued function. Then the define the following notations:

pFGq pxq :“
ÿ

yPY

F py|xqGpx, yq,

´

p pF ´ F qG
¯

pxq :“
ÿ

yPY

´

pF py|xq ´ F py|xq

¯

Gpx, yq.

Similarly, let F : X ˆ Y Ñ ∆pZq, pF : X ˆ Y Ñ ∆pZq, and G : Z Ñ R be defined with the same meaning as above, then
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we define the following notations:

pFGq px, yq :“
ÿ

zPZ

F pz|x, yqGpzq,

´

p pF ´ F qG
¯

px, yq :“
ÿ

zPZ

´

pF pz|x, yq ´ F py|x, yq

¯

Gpzq.

D.2. High Probability Events

In this section, we state the high probability events Ωk,h and E . For ease of reference, we employ the same notation as (Azar
et al., 2017).

Let Ωk,h be the set of events:

Ωk,h :“
!

pVi,jpsq ě V ˚
j psq ^ pQi,jps, aq ě Q˚

j ps, aq,@pi, jq P rk, hshist, s P S, a P A
)

,

for k P JKK and h P JHK, where:

rk, hshist :“ tpi, jq : i P JKK, j P JHK, pi ă kq _ pi “ k, j ě hqu,

under which optimism holds.

Event E is the event defined as:

E :“ E
pP

č

E
pC ind

č č

kPJKK
hPJHK
sPS
aPA

BPPpAq

#

EazpF
r∆V ,k,h, H, Lq

č

EazpF
r∆V ,k,h,s, H, Lq

č

EazpF
r∆V ,k,h,s,a, H, Lq

č

EazpF 1
r∆V ,k,h

,
1

?
L
,Lq

č

EazpF 1
r∆V ,k,h,s

,
1

?
L
,Lq

č

EazpF 1
r∆V ,k,h,s,a

,
1

?
L
,Lq

č

EazpF
r∆V ,k,h,B, H, Lq

č

EazpF
r∆V ,k,h,B,s, H, Lq

č

EazpF
r∆V ,k,h,B,s,a, H, Lq

č

EazpF 1
r∆V ,k,h,B,

1
?
L
,Lq

č

EazpF 1
r∆V ,k,h,B,s

,
1

?
L
,Lq

č

EazpF 1
r∆V ,k,h,B,s,a

,
1

?
L
,Lq

č

EazpF
r∆Q,k,h, H, Lq

č

EazpF
r∆Q,k,h,s, H, Lq

č

EazpF
r∆Q,k,h,s,a, H, Lq

č

EazpF 1
r∆Q,k,h

,
1

?
L
,Lq

č

EazpF 1
r∆Q,k,h,s

,
1

?
L
,Lq

č

EazpF 1
r∆Q,k,h,s,a

,
1

?
L
,Lq

č

EfrpGV,k,h, H
4Tk, H

3, Lq
č

EfrpGV,k,h,s, H
5Nk,h, H

3, Lq
č

EfrpGV,k,h,s,a, H
5Nk,h, H

3, Lq
č

EfrpGQ,k,h, H
4Tk, H

3, Lq
č

EfrpGQ,k,h,s, H
5Nk,h, H

3, Lq
č

EfrpGQ,k,h,s,a, H
5Nk,h, H

3, Lq

č

Eaz
´

F
b
V
,k,h

, H2, L
¯

č

Eaz
´

F
b
V
,k,h,s

, H2, L
¯

č

Eaz
´

F
b
V
,k,h,s,a

, H2, L
¯

č

Eaz
´

F
b
Q
,k,h

, H2, L
¯

č

Eaz
´

F
b
Q
,k,h,s

, H2, L
¯

č

Eaz
´

F
b
Q
,k,h,s,a

, H2, L
¯

+

.
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The proof that event E holds with probability at least 1 ´ δ directly follows from Lemma 1 of (Azar et al., 2017).

We now state the definitions of the events that compose E . Events E
pP and E

pC ind concern the estimation of the transition
probability and of the action availability distributions:

E
pP
:“ t pPkps1|s, aq P Ppk, h,Nkps, aq, s, a, s1q,@k P JKK, h P JHK, ps, a, s1q P S ˆ A ˆ Su,

E
pC ind :“ t pC ind

k pB|sq P Cpk, h,Nkpsq, s,Bq,@k P JKK, h P JHK, s P S,B P PpAqu.

Ppk, h, n, s, a, s1q is the subset of the set of all transition probability distributions P such that:

Ppk, h, n, s, a, s1q :“

#

rP p¨|s, aq P P : } rP p¨|s, aq ´ P p¨|s, aq}1 ď 2

c

SL

n
, (11)

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

s1PS
p rP ps1|s, aq ´ P ps1|s, aqqV ˚

h ps1q

ˇ

ˇ

ˇ

ˇ

ˇ

ď min

$

&

%

d

2pV˚
k,h`1ps, aqL

n
`

7HL

3pn ´ 1q
,

c

2V˚
h`1ps, aqL

n
`

2HL

3n

,

.

-

, (12)

ˇ

ˇ

ˇ

rP ps1|s, aq ´ P ps1|s, aq

ˇ

ˇ

ˇ
ď

c

2P ps1|s, aqp1 ´ P ps1|s, aqqL

n
`

2L

3n

+

, (13)

and Cpk, h,Nkpsq, s,Bq is the subset of all the action availability distributions C such that:

Cpk, h,Nkpsq, s,Bq :“

#

rC indp¨|sq P C : } rC indp¨|sq ´ C indp¨|sq}1 ď 2

c

2AL

n
, (14)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

BPPpAq

p rC indpB|sq ´ C indpB|sqqQ˚
hps, a

π˚
pBq

k,h q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď min

$

&

%

d

2pQ˚
k,hpsqL

n
`

7HL

3pn ´ 1q
,

c

2Q˚
hpsqL

n
`

2HL

3n

,

.

-

, (15)

ˇ

ˇ

ˇ

rC indpB|sq ´ C indpB|sq

ˇ

ˇ

ˇ
ď

c

2C indpB|sqp1 ´ C indpB|sqqL

n
`

2L

3n

+

, (16)

where Eq. (11) and Eq. (14) follows by applying Lemma 2.1 of (Weissman et al., 2003), Eq. (12) and Eq. (15) follows by
applying both the Bernstein inequality (see, e.g., Cesa-Bianchi & Lugosi, 2006) and the Empirical Bernstein inequality
(Maurer & Pontil, 2009), and Eq. (13) and Eq. (16) derive from the application of the Bernstein inequality for Bernoulli
random variables.

The remaining events concern the summation of Martingale difference sequences. For ease of reading, let us introduce the
following shorthand notation:

Is :“ Itsi,h “ su,

Is,a :“ Itsi,h “ s, a
πipBi,hq

i,h “ au,

where I represents the indicator function.
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EazpF
r∆V ,k,h, H, Lq :“

#

k
ÿ

i“1

H´1
ÿ

j“h

pP r∆V
i,j`1qpsi,j , a

πipBi,jq

i,j q ´

k
ÿ

i“1

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q

ď 2
a

kpH ´ hqH2L

+

,

EazpF
r∆V ,k,h,s, H, Lq :“

#

k
ÿ

i“1

Is
H´1
ÿ

j“h

pP r∆V
i,j`1qpsi,j , a

πipBi,jq

i,j q ´

k
ÿ

i“1

Is
H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q

ď 2
b

Nk,hpsqpH ´ hqH2L

+

,

EazpF
r∆V ,k,h,s,a, H, Lq :“

#

k
ÿ

i“1

Is,a
H´1
ÿ

j“h

pP r∆V
i,j`1qpsi,j , a

πipBi,jq

i,j q ´

k
ÿ

i“1

Is,a
H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q

ď 2
b

Nk,hps, aqpH ´ hqH2L

+

,

EazpF 1
r∆V ,k,h

,
1

?
L
,Lq :“

#

k
ÿ

i“1

H´1
ÿ

j“h

ÿ

s1PS
P ps1|si,j , a

πipBi,jq

i,j q

d

Its1 P rssi,ju

Nipsi,j , a
πipBi,jq

i,j qP ps1|si,j , a
πipBi,jq

i,j q

r∆V
i,j`1ps1q

´

k
ÿ

i“1

H´1
ÿ

j“h

d

Itsi,j`1 P rssi,ju

Nipsi,j , a
πipBi,jq

i,j qP psi,j`1|si,j , a
πipBi,jq

i,j q

r∆V
i,j`1psi,j`1q

ď 2
a

kpH ´ hq

+

,

EazpF 1
r∆V ,k,h,s

,
1

?
L
,Lq :“

#

k
ÿ

i“1

Is
H´1
ÿ

j“h

ÿ

s1PS
P ps1|si,j , a

πipBi,jq

i,j q

d

Its1 P rssi,ju

Nipsi,j , a
πipBi,jq

i,j qP ps1|si,j , a
πipBi,jq

i,j q

r∆V
i,j`1ps1q

´

k
ÿ

i“1

Is
H´1
ÿ

j“h

d

Itsi,j`1 P rssi,ju

Nipsi,j , a
πipBi,jq

i,j qP psi,j`1|si,j , a
πipBi,jq

i,j q

r∆V
i,j`1psi,j`1q

ď 2
b

Nk,hpsqpH ´ hq

+

,

EazpF 1
r∆V ,k,h,s,a

,
1

?
L
,Lq :“

#

k
ÿ

i“1

Is,a
H´1
ÿ

j“h

ÿ

s1PS
P ps1|si,j , a

πipBi,jq

i,j q

d

Its1 P rssi,ju

Nipsi,j , a
πipBi,jq

i,j qP ps1|si,j , a
πipBi,jq

i,j q

r∆V
i,j`1ps1q

´

k
ÿ

i“1

Is,a
H´1
ÿ

j“h

d

Itsi,j`1 P rssi,ju

Nipsi,j , a
πipBi,jq

i,j qP psi,j`1|si,j , a
πipBi,jq

i,j q

r∆V
i,j`1psi,j`1q

ď 2
b

Nk,hps, aqpH ´ hq

+

,

EazpF
r∆V ,k,h,B, H, Lq :“

#

k
ÿ

i“1

H´1
ÿ

j“h

ÿ

BPPpAq

C indpB|si,jq
ÿ

s1PS
P ps1|si,j , a

πipBq

i,j q r∆V
i,j`1ps1q

´

k
ÿ

i“1

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q

ď 2
a

kpH ´ hqH2L

+

,
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EazpF
r∆V ,k,h,B,s, H, Lq :“

#

k
ÿ

i“1

Is
H´1
ÿ

j“h

ÿ

BPPpAq

C indpB|si,jq
ÿ

s1PS
P ps1|si,j , a

πipBq

i,j q r∆V
i,j`1ps1q

´

k
ÿ

i“1

Is
H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q

ď 2
b

Nk,hpsqpH ´ hqH2L

+

,

EazpF
r∆V ,k,h,B,s,a, H, Lq :“

#

k
ÿ

i“1

Is,a
H´1
ÿ

j“h

ÿ

BPPpAq

C indpB|si,jq
ÿ

s1PS
P ps1|si,j , a

πipBq

i,j q r∆V
i,j`1ps1q

´

k
ÿ

i“1

Is,a
H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q

ď 2
b

Nk,hps, aqpH ´ hqH2L

+

,

EazpF 1
r∆V ,k,h,B,

1
?
L
,Lq :“

#

k
ÿ

i“1

H´1
ÿ

j“h

E B„C ind
p¨|si,jq

s1
„P p¨|si,j ,a

πipBq

i,j q

«

d

Its1 P rssi,ju

Nipsi,j , a
πipBq

i,j qP ps1|si,j , a
πipBq

i,j q

r∆V
i,j`1ps1q

ff

´

k
ÿ

i“1

H´1
ÿ

j“h

d

Itsi,j`1 P rssi,ju

Nipsi,j , a
πipBq

i,j qP ps1|si,j , a
πipBq

i,j q

r∆V
i,j`1psi,j`1q

ď 2
a

kpH ´ hq

+

,

EazpF 1
r∆V ,k,h,B,s

,
1

?
L
,Lq :“

#

k
ÿ

i“1

Is
H´1
ÿ

j“h

E B„C ind
p¨|si,jq

s1
„P p¨|si,j ,a

πipBq

i,j q

«

d

Its1 P rssi,ju

Nipsi,j , a
πipBq

i,j qP ps1|si,j , a
πipBq

i,j q

r∆V
i,j`1ps1q

ff

´

k
ÿ

i“1

Is
H´1
ÿ

j“h

d

Itsi,j`1 P rssi,ju

Nipsi,j , a
πipBq

i,j qP ps1|si,j , a
πipBq

i,j q

r∆V
i,j`1psi,j`1q

ď 2
b

Nk,hpsqpH ´ hq

+

,

EazpF 1
r∆V ,k,h,B,s,a

,
1

?
L
,Lq :“

#

k
ÿ

i“1

Is,a
H´1
ÿ

j“h

E B„C ind
p¨|si,jq

s1
„P p¨|si,j ,a

πipBq

i,j q

«

d

Its1 P rssi,ju

Nipsi,j , a
πipBq

i,j qP ps1|si,j , a
πipBq

i,j q

r∆V
i,j`1ps1q

ff

´

k
ÿ

i“1

Is,a
H´1
ÿ

j“h

d

Itsi,j`1 P rssi,ju

Nipsi,j , a
πipBq

i,j qP ps1|si,j , a
πipBq

i,j q

r∆V
i,j`1psi,j`1q

ď 2
b

Nk,hps, aqpH ´ hq

+

,

EazpF
r∆Q,k,h, H, Lq :“

#

k
ÿ

i“1

H´1
ÿ

j“h

pC ind
r∆Q
i,jqpsi,jq ´

k
ÿ

i“1

H´1
ÿ

j“h

r∆Q
i,jpsi,j , a

πipBi,jq

i,j q

ď 2
a

kpH ´ hqH2L

+

,

EazpF
r∆Q,k,h,s, H, Lq :“

#

k
ÿ

i“1

Is
H´1
ÿ

j“h

pC ind
r∆Q
i,jqpsi,jq ´

k
ÿ

i“1

Is
H´1
ÿ

j“h

r∆Q
i,jpsi,j , a

πipBi,jq

i,j q
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ď 2
b

Nk,hpsqpH ´ hqH2L

+

,

EazpF
r∆Q,k,h,s,a, H, Lq :“

#

k
ÿ

i“1

Is,a
H´1
ÿ

j“h

pC ind
r∆Q
i,jqpsi,jq ´

k
ÿ

i“1

Is,a
H´1
ÿ

j“h

r∆Q
i,jpsi,j , a

πipBi,jq

i,j q

ď 2
b

Nk,hps, aqpH ´ hqH2L

+

,

EazpF 1
r∆Q,k,h

,
1

?
L
,Lq :“

#

k
ÿ

i“1

H´1
ÿ

j“h

ÿ

BPPpAq

C indpB|si,jq

d

ItB P rBsi,ju

Nipsi,jqC indpB|si,jq
r∆Q
i,jpsi,j , a

πipBq

i,j q

´

k
ÿ

i“1

H´1
ÿ

j“h

d

ItBi,j P rBsi,ju

Nipsi,jqC indpB|si,jq
r∆Q
i,jpsi,j , a

πipBi,jq

i,j q

ď 2
a

kpH ´ hq

+

,

EazpF 1
r∆Q,k,h,s

,
1

?
L
,Lq :“

#

k
ÿ

i“1

Is
H´1
ÿ

j“h

ÿ

BPPpAq

C indpB|si,jq

d

ItB P rBsi,ju

Nipsi,jqC indpB|si,jq
r∆Q
i,jpsi,j , a

πipBq

i,j q

´

k
ÿ

i“1

Is
H´1
ÿ

j“h

d

ItBi,j P rBsi,ju

Nipsi,jqC indpB|si,jq
r∆Q
i,jpsi,j , a

πipBi,jq

i,j q

ď 2
b

Nk,hpsqpH ´ hq

+

,

EazpF 1
r∆Q,k,h,s,a

,
1

?
L
,Lq :“

#

k
ÿ

i“1

Is,a
H´1
ÿ

j“h

ÿ

BPPpAq

C indpB|si,jq

d

ItB P rBsi,ju

Nipsi,jqC indpB|si,jq
r∆Q
i,jpsi,j , a

πipBq

i,j q

´

k
ÿ

i“1

Is,a
H´1
ÿ

j“h

d

ItBi,j P rBsi,ju

Nipsi,jqC indpB|si,jq
r∆Q
i,jpsi,j , a

πipBi,jq

i,j q

ď 2
b

Nk,hps, aqpH ´ hq

+

,

EfrpGV,k,h, H
4Tk, H

3, Lq :“

#

k
ÿ

i“1

E

«

H´1
ÿ

j“h

Vπi
j`1psi,j , a

πipBi,jq

i,j q|Hi,h

ff

´

k
ÿ

i“1

H´1
ÿ

j“h

Vπi
j`1psi,j , a

πipBi,jq

i,j q

ď 2
a

H4TkL `
4

3
H3L

+

,

EfrpGV,k,h,s, H
5Nk,h, H

3, Lq :“

#

k
ÿ

i“1

IsE

«

H´1
ÿ

j“h

Vπi
j`1psi,j , a

πipBi,jq

i,j q|Hi,h

ff

´

k
ÿ

i“1

Is
H´1
ÿ

j“h

Vπi
j`1psi,j , a

πipBi,jq

i,j q

ď 2
b

H5Nk,hpsqL `
4

3
H3L

+

,

EfrpGV,k,h,s,a, H
5Nk,h, H

3, Lq :“

#

k
ÿ

i“1

Is,aE

«

H´1
ÿ

j“h

Vπi
j`1psi,j , a

πipBi,jq

i,j q|Hi,h

ff

´

k
ÿ

i“1

Is,a
H´1
ÿ

j“h

Vπi
j`1psi,j , a

πipBi,jq

i,j q

ď 2
b

H5Nk,hps, aqL `
4

3
H3L

+

,
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EfrpGQ,k,h, H
4Tk, H

3, Lq :“

#

k
ÿ

i“1

E

«

H´1
ÿ

j“h

Qπi
j psi,jq|Hi,h

ff

´

k
ÿ

i“1

H´1
ÿ

j“h

Qπi
j psi,jq

ď 2
a

H4TkL `
4

3
H3L

+

,

EfrpGQ,k,h,s, H
5Nk,h, H

3, Lq :“

#

k
ÿ

i“1

IsE

«

H´1
ÿ

j“h

Qπi
j psi,jq|Hi,h

ff

´

k
ÿ

i“1

Is
H´1
ÿ

j“h

Qπi
j psi,jq

ď 2
b

H5Nk,hpsqL `
4

3
H3L

+

,

EfrpGQ,k,h,s,a, H
5Nk,h, H

3, Lq :“

#

k
ÿ

i“1

Is,aE

«

H´1
ÿ

j“h

Qπi
j psi,jq|Hi,h

ff

´

k
ÿ

i“1

Is,a
H´1
ÿ

j“h

Qπi
j psi,jq

ď 2
b

H5Nk,hps, aqL `
4

3
H3L

+

,

Eaz
´

F
b
Q
,k,h

, H2, L
¯

:“

#

k
ÿ

i“1

H´1
ÿ

j“h

pPb
Q

qpsi,j , a
πipBi,jq

i,j q ´

k
ÿ

i“1

H´1
ÿ

j“h

b
Q

psi,j`1q

ď 2
a

kpH ´ hqH4L

+

,

Eaz
´

F
b
Q
,k,h,s

, H2, L
¯

:“

#

k
ÿ

i“1

Is
H´1
ÿ

j“h

pPb
Q

qpsi,j , a
πipBi,jq

i,j q ´

k
ÿ

i“1

Is
H´1
ÿ

j“h

b
Q

psi,j`1q

ď 2
b

Nk,hpsqpH ´ hqH4L

+

,

Eaz
´

F
b
Q
,k,h,s,a

, H2, L
¯

:“

#

k
ÿ

i“1

Is,a
H´1
ÿ

j“h

pPb
Q

qpsi,j , a
πipBi,jq

i,j q ´

k
ÿ

i“1

Is,a
H´1
ÿ

j“h

b
Q

psi,j`1q

ď 2
b

Nk,hps, aqpH ´ hqH4L

+

,

Eaz
´

F
b
V
,k,h

, H2, L
¯

:“

#

k
ÿ

i“1

H´1
ÿ

j“h

pCb
V

qpsi,jq ´

k
ÿ

i“1

H´1
ÿ

j“h

b
V

psi,j , a
πipBi,jq

i,j q

ď 2
a

kpH ´ hqH4L

+

,

Eaz
´

F
b
V
,k,h,s

, H2, L
¯

:“

#

k
ÿ

i“1

Is
H´1
ÿ

j“h

pCb
V

qpsi,jq ´

k
ÿ

i“1

Is
H´1
ÿ

j“h

b
V

psi,j , a
πipBi,jq

i,j q

ď 2
b

Nk,hpsqpH ´ hqH4L

+

,

Eaz
´

F
b
V
,k,h,s,a

, H2, L
¯

:“

#

k
ÿ

i“1

Is,a
H´1
ÿ

j“h

pCb
V

qpsi,jq ´

k
ÿ

i“1

Is,a
H´1
ÿ

j“h

b
V

psi,j , a
πipBi,jq

i,j q

ď 2
b

Nk,hps, aqpH ´ hqH4L

+

.
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The choice of L derives from a union bound over the 40 events, for every episode k P JKK, stage h P JHK, state s P S,
action a P A, and action subset B P PpAq, noting that each event holds with at least probability 1 ´ δ.

D.3. Technical Lemmas

Lemma D.1 (Regret decomposition upper bound ∆V
k,h). Let k P JKK and h P JHK. Assume events E and Ωk,h hold. Then,

the regret from stage h onward of all episodes up to k, in terms of state value function, can be upper bounded as follows:

k
ÿ

i“1

∆V
i,hpsi,hq ď

k
ÿ

i“1

r∆V
i,hpsi,hq

ď e2
k

ÿ

i“1

H´1
ÿ

j“h

«

bVi,jpsi,jq ` EB„C indp¨|si,jqrbQi,jpsi,j , a
πipBq

i,j qs `
1

H
bQi,jpsi,j , a

πipBi,jq

i,j q

` ξVi,j `
1

H
εVi,j `

?
2Lξ

V

i,j `

?
2L

H
εVi,j `

?
2LεQi,j

` EB„C indp¨|si,jq

”´

p pPi ´ P qV ˚
j`1

¯

psi,j , a
πipBq

i,j q

ı

`
1

H

´

p pPi ´ P qV ˚
j`1

¯

psi,j , a
πipBi,jq

i,j q

` EB„C indp¨|si,jq

«

8H2SL

3Nipsi,j , a
πipBq

i,j q

ff

`
8HSL

3Nipsi,j , a
πipBi,jq

i,j q

`
2H22AL

Nipsi,jq
`

2H2AL

3Nipsi,jq
`

d

2Qπi
j psi,jqL

Nipsi,jq
`

2HL

3Nipsi,jq

ff

.

Proof. Considering a single value of k P JKK, we first observe that, under Ωk,h:

∆V
k,hpsk,hq “ V ˚

h psk,hq ´ V πk

h psk,hq

ď pVk,hpsk,hq ´ V πk

h psk,hq

“ r∆V
k,hpsk,hq.

As such, we can then bound the pseudo-regret r∆V
k,hpsk,hq:

r∆V
k,hpsk,hq “ pVk,hpsk,hq ´ V πk

h psk,hq

“ bVk,hpsk,hq `

´

pC ind
k

pQk,h

¯

psk,hq ´
`

C indQπk

h

˘

psk,hq

“ bVk,hpsk,hq `

´

p pC ind
k ´ C indq pQk,h

¯

psk,hq
loooooooooooooooomoooooooooooooooon

paq

`EB„C indp¨|sk,hqrbQk,hpsk,h, a
πkpBq

k,h qs

` EB„C indp¨|sk,hq

”´

pPk
pVk,h`1

¯

psk,h, a
πkpBq

k,h q ´
`

PV πk

h`1

˘

psk,h, a
πkpBq

k,h q

ı

“ paq ` bVk,hpsk,hq ` EB„C indp¨|sk,hqrbQk,hpsk,h, a
πkpBq

k,h qs

` EB„C indp¨|sk,hq

”´

p pPk ´ P q pVk,h`1

¯

psk,h, a
πkpBq

k,h q

ı

` E B„C ind
p¨|sk,hq

s1
„P p¨|sk,h,a

πkpBq

k,h q

”

r∆V
k,h`1ps1q

ı

“ paq ` bVk,hpsk,hq ` EB„C indp¨|sk,hqrbQk,hpsk,h, a
πkpBq

k,h qs ` E B„C ind
p¨|sk,hq

s1
„P p¨|sk,h,a

πkpBq

k,h q

”

r∆V
k,h`1ps1q

ı

` EB„C indp¨|sk,hq

”´

p pPk ´ P qV ˚
h`1

¯

psk,h, a
πkpBq

k,h q

ı
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` EB„C indp¨|sk,hq

”´

p pPk ´ P qp pVk,h`1 ´ V ˚
h`1q

¯

psk,h, a
πkpBq

k,h q

ı

“ paq ` bVk,hpsk,hq ` EB„C indp¨|sk,hqrbQk,hpsk,h, a
πkpBq

k,h qs ` r∆V
k,h`1psk,h`1q

` ξVk,h ` EB„C indp¨|sk,hq

”´

p pPk ´ P qV ˚
h`1

¯

psk,h, a
πkpBq

k,h q

ı

` EB„C indp¨|sk,hqr

´

p pPk ´ P qp pVk,h`1 ´ V ˚
h`1q

¯

psk,h, a
πkpBq

k,h q
looooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooon

pbq

s (17)

We now bound term pbq following the procedure of (Azar et al., 2017, Lemma 3), obtaining the following bound:

pbq ď
?
2Lξ

V

k,h `
1

H
r∆V
k,h`1psk,h`1q ` EB„C indp¨|sk,hq

«

8H2SL

3Nkpsk,h, a
πkpBq

k,h q

ff

.

To bound term paq we first derive that:

paq “

´

p pC ind
k ´ C indq pQk,h

¯

psk,hq

“

´

p pC ind
k ´ C indqp pQk,h ´ Qπk

h q

¯

psk,hq
loooooooooooooooooooooomoooooooooooooooooooooon

pcq

`

´

p pC ind
k ´ C indqQπk

h

¯

psk,hq

ď pcq `

d

2Qπk

h psk,hqL

Nkpsk,hq
`

2HL

3Nkpsk,hq
(18)

where Eq. (18) is obtained by applying Bernstein’s inequality. We now bound term pcq:

pcq “
ÿ

BPPpAq

´

pC ind
k pB|sk,hq ´ C indpB|sk,hq

¯

r∆Q
k,hpsk,h, a

πkpBq

k,h q

ď
ÿ

BPPpAq

˜

d

2C indpB|sk,hqp1 ´ C indpB|sk,hqqL

Nkpsk,hq
`

2L

3Nkpsk,hq

¸

r∆Q
k,hpsk,h, a

πkpBq

k,h q (19)

ď
ÿ

BPPpAq

˜

d

2C indpB|sk,hqL

Nkpsk,hq
`

2L

3Nkpsk,hq

¸

r∆Q
k,hpsk,h, a

πkpBq

k,h q

ď
?
2L

ÿ

BPPpAq

d

C indpB|sk,hq

Nkpsk,hq
r∆Q
k,hpsk,h, a

πkpBq

k,h q

looooooooooooooooooooooooomooooooooooooooooooooooooon

pdq

`
2H2AL

3Nkpsk,hq
(20)

where Eq. (19) is obtained by applying Bernstein’s inequality for Bernoulli Random Variables, and Eq. (20) follows by
upper bounding r∆Q

k,hpsk,h, a
πkpBq

k,h q with H . Let rBsk,h “ tB P PpAq : Nkpsk,hqC indpB|sk,hq ě 2H2Lu. To bound term
pdq, we first rewrite it as:

pdq “
ÿ

BPrBsk,h

d

C indpB|sk,hq

Nkpsk,hq
r∆Q
k,hpsk,h, a

πkpBq

k,h q

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

peq

`
ÿ

BRrBsk,h

d

C indpB|sk,hq

Nkpsk,hq
r∆Q
k,hpsk,h, a

πkpBq

k,h q

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

pfq

, (21)
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we can then bound term pfq as:

pfq “
ÿ

BRrBsk,h

a

Nkpsk,hqC indpB|sk,hq

Nkpsk,hq
r∆Q
k,hpsk,h, a

πkpBq

k,h q

ď
H22A

?
2L

Nkpsk,hq
,

by applying the condition of rBsk,h, and term peq as:

peq “
ÿ

BPrBsk,h

d

C indpB|sk,hq

Nkpsk,hq
r∆Q
k,hpsk,h, a

πkpBq

k,h q

“ εQk,h `

d

ItBk,h P rBsk,hu

Nkpsk,hqC indpBk,h|sk,hq
r∆Q
k,hpsk,h, a

πkpBk,hq

k,h q (22)

ď εQk,h `
1

?
2H2L

r∆Q
k,hpsk,h, a

πkpBk,hq

k,h q, (23)

where Eq. (22) is obtained by applying the definition of εQk,h, Eq. (23) follows from the definition of rBsk,h. Plugging the
bounds of terms peq and pfq into Eq. (21), we get:

pdq ď εQk,h `
1

?
2H2L

r∆Q
k,hpsk,h, a

πkpBk,hq

k,h q `
H22A

?
2L

Nkpsk,hq
.

We can then bound r∆Q
k,hpsk,h, a

πkpBk,hq

k,h q as in Lemma 3 of (Azar et al., 2017) and plug the bound of term pdq into Eq. (20),
thus obtaining:

pcq ď
?
2LεQk,h `

1

H
bQk,hpsk,h, a

πkpBk,hq

k,h q `

ˆ

1

H
`

1

H2

˙

r∆V
k,h`1psk,h`1q

`
1

H

´

p pPk ´ P qV ˚
h`1

¯

psk,h, a
πkpBk,hq

k,h q `
1

H
εVk,h `

?
2L

H
εVk,h

`
8HSL

3Nkpsk,h, a
πkpBk,hq

k,h q
`

2H22AL

Nkpsk,hq
`

2H2AL

3Nkpsk,hq
.

Finally, putting together, the bounds of terms paq, pbq, and pcq, and plugging them into Eq. (17), we obtain:

r∆V
k,hpsk,hq ď bVk,hpsk,hq ` EB„C indp¨|sk,hqrbQk,hpsk,h, a

πkpBq

k,h qs `
1

H
bQk,hpsk,h, a

πkpBk,hq

k,h q

`

ˆ

1 `
2

H
`

1

H2

˙

r∆V
k,h`1psk,h`1q ` ξVk,h `

1

H
εVk,h

`
?
2Lξ

V

k,h `

?
2L

H
εVk,h `

?
2LεQk,h

` EB„C indp¨|sk,hq

”´

p pPk ´ P qV ˚
h`1

¯

psk,h, a
πkpBq

k,h q

ı

`
1

H

´

p pPk ´ P qV ˚
h`1

¯

psk,h, a
πkpBk,hq

k,h q

` EB„C indp¨|sk,hq

«

8H2SL

3Nkpsk,h, a
πkpBq

k,h q

ff

`
8HSL

3Nkpsk,h, a
πkpBk,hq

k,h q
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`
2H22AL

Nkpsk,hq
`

2H2AL

3Nkpsk,hq
`

d

2Qπk

h psk,hqL

Nkpsk,hq
`

2HL

3Nkpsk,hq
.

By applying the same inductive argument of (Azar et al., 2017, Lemma 3), we can isolate the term r∆V
k,h and rewrite:

r∆V
k,hpsk,hq ď e2

H´1
ÿ

j“h

«

bVk,jpsk,jq ` EB„C indp¨|sk,jqrbQk,jpsk,j , a
πkpBq

k,j qs `
1

H
bQk,jpsk,j , a

πkpBk,jq

k,j q

` ξVk,h `
1

H
εVk,j `

?
2Lξ

V

k,h `

?
2L

H
εVk,j `

?
2LεQk,j

` EB„C indp¨|sk,jq

”´

p pPk ´ P qV ˚
j`1

¯

psk,j , a
πkpBq

k,j q

ı

`
1

H

´

p pPk ´ P qV ˚
j`1

¯

psk,j , a
πkpBk,jq

k,j q

` EB„C indp¨|sk,jq

«

8H2SL

3Nkpsk,j , a
πkpBq

k,j q

ff

`
8HSL

3Nkpsk,j , a
πkpBk,jq

k,j q

`
2H22AL

Nkpsk,jq
`

2H2AL

3Nkpsk,jq
`

d

2Qπk
j psk,jqL

Nkpsk,jq
`

2HL

3Nkpsk,jq

ff

, (24)

observing that our multiplicative constant is e2 instead of e due to the p1 ` 2{H ` 1{H2q coefficient of the recursive term.
Finally, recalling the definition of Ωk,h:

Ωk,h :“
!

pVi,jpsq ě V ˚
j psq ^ pQi,jps, aq ě Q˚

j ps, aq,@pi, jq P rk, hshist, s P S, a P A
)

,

where rk, hshist :“ tpi, jq : i P JKK, j P JHK, pi ă kq _ pi “ k, j ě hqu, we observe that if Ωk,h holds then also the events
Ωi,j for pi, jq P rk, hshist hold. As such, we can sum up the bound of Eq. (24) over all the episodes i P JkK, thus concluding
the proof.

Lemma D.2 (Regret decomposition upper bound ∆Q
k,h). Let k P JKK and h P JHK. Assume events E and Ωk,h hold. Then,

the regret from stage h onward of all episodes up to k, in terms of state-action value function, can be upper bounded as
follows:

k
ÿ

i“1

∆Q
k,hpsi,h, a

πipBi,hq

i,h q ď

k
ÿ

i“1

r∆Q
k,hpsi,h, a

πipBi,hq

i,h q

ď e
k

ÿ

i“1

H´1
ÿ

j“h

«

bQi,jpsi,j , a
πipBi,jq

i,j q `

ˆ

1 `
1

H

˙

bVi,j`1psi,j`1q

`
?
2LεVi,j ` εVi,j `

ˆ

1 `
1

H

˙

εQi,j`1

`

´

p pPi ´ P qV ˚
j`1

¯

psi,j , a
πipBi,jq

i,j q

`
8H2SL

Nipsi,j , a
πipBi,jq

i,j q
`

ˆ

1 `
1

H

˙

2H

d

2AL

Nipsi,j`1q

ff

.

Proof. Considering a single value of k P JKK, we first observe that, under Ωk,h:

∆Q
k,hpsk,h, a

πkpBk,hq

k,h q “ Q˚
hpsk,h, a

πkpBk,hq

k,h q ´ Qπk

h psk,h, a
πkpBk,hq

k,h q

ď pQk,hpsk,h, a
πkpBk,hq

k,h q ´ Qπk

h psk,h, a
πkpBk,hq

k,h q
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“ r∆Q
k,hpsk,h, a

πkpBk,hq

k,h q.

As such, we can bound the pseudo-regret r∆Q
k,hpsk,h, a

πkpBk,hq

k,h q:

r∆Q
k,hpsk,h, a

πkpBk,hq

k,h q “ pQk,hpsk,h, a
πkpBk,hq

k,h q ´ Qπk

h psk,h, a
πkpBk,hq

k,h q

“ bQk,hpsk,h, a
πkpBk,hq

k,h q `

´

pPk
pVk,h`1

¯

psk,h, a
πkpBk,hq

k,h q ´
`

PV πk

h`1

˘

psk,h, a
πkpBk,hq

k,h q

“ bQk,hpsk,h, a
πkpBk,hq

k,h q `

´

p pPk ´ P q pVk,h`1

¯

psk,h, a
πkpBk,hq

k,h q

`

´

P p pVk,h`1 ´ V πk

h`1q

¯

psk,h, a
πkpBk,hq

k,h q

“ bQk,hpsk,h, a
πkpBk,hq

k,h q `

´

p pPk ´ P qp pVk,h`1 ´ V ˚
h`1q

¯

psk,h, a
πkpBk,hq

k,h q

`

´

P p pVk,h`1 ´ V πk

h`1q

¯

psk,h, a
πkpBk,hq

k,h q `

´

p pPk ´ P qV ˚
h`1

¯

psk,h, a
πkpBk,hq

k,h q

ď bQk,hpsk,h, a
πkpBk,hq

k,h q `
?
2LεVk,h ` εVk,h `

ˆ

1 `
1

H

˙

r∆V
k,h`1psk,h`1q`

`
8H2SL

Nkpsk,h, a
πkpBk,hq

k,h q
`

´

p pPk ´ P qV ˚
h`1

¯

psk,h, a
πkpBk,hq

k,h q, (25)

where Eq. (25) is obtained by bounding p pPk ´ P qp pVk,h`1 ´ V ˚
h`1q according to the procedure of (Azar et al., 2017, Lemma

3). Observing that:

r∆V
k,h`1psk,h`1q “ bVk,h`1psk,h`1q `

´

pC ind
k

pQk,h`1

¯

psk,h`1q ´
`

C indQπk

h`1

˘

psk,h`1q

“ bVk,h`1psk,h`1q `

´

p pC ind
k ´ C indq pQk,h`1

¯

psk,h`1q `

´

C indp pQk,h`1 ´ Qπk

h`1q

¯

psk,h`1q

ď bVk,h`1psk,h`1q ` εQk,h`1 ` 2H

d

2AL

Nkpsk,h`1q
` r∆Q

k,h`1psk,h`1, a
πkpBk,h`1q

k,h`1 q, (26)

where Eq. (26) is obtained by applying the definition of εQk,h and by bounding p pC ind
k ´ C indq pQk,h`1 using Thr. 2.1 of

(Weissman et al., 2003), then we can rewrite:

r∆Q
k,hpsk,h, a

πkpBk,hq

k,h q ď bQk,hpsk,h, a
πkpBk,hq

k,h q `
?
2LεVk,h ` εVk,h `

8H2SL

Nkpsk,h, a
πkpBk,hq

k,h q

`

´

p pPk ´ P qV ˚
h`1

¯

psk,h, a
πkpBk,hq

k,h q `

ˆ

1 `
1

H

˙

bVk,h`1psk,h`1q `

ˆ

1 `
1

H

˙

εQk,h`1

`

ˆ

1 `
1

H

˙

2H

d

2AL

Nkpsk,h`1q
`

ˆ

1 `
1

H

˙

r∆Q
k,h`1psk,h`1, a

πkpBk,h`1q

k,h`1 q.

By applying the same inductive argument of (Azar et al., 2017, Lemma 3), we can isolate the term r∆Q
k,h and rewrite:

r∆Q
k,hpsk,h, a

πkpBk,hq

k,h q ď e
H´1
ÿ

j“h

«

bQk,jpsk,j , a
πkpBk,jq

k,j q `

ˆ

1 `
1

H

˙

bVk,j`1psk,j`1q

`
?
2LεVk,j ` εVk,j `

ˆ

1 `
1

H

˙

εQk,j`1
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`

´

p pPk ´ P qV ˚
j`1

¯

psk,j , a
πkpBk,jq

k,j q

`
8H2SL

Nkpsk,j , a
πkpBk,jq

k,j q
`

ˆ

1 `
1

H

˙

2H

d

2AL

Nkpsk,j`1q

ff

. (27)

Finally, recalling the definition of Ωk,h:

Ωk,h :“
!

pVi,jpsq ě V ˚
j psq ^ pQi,jps, aq ě Q˚

j ps, aq,@pi, jq P rk, hshist, s P S, a P A
)

,

where rk, hshist :“ tpi, jq : i P JKK, j P JHK, pi ă kq _ pi “ k, j ě hqu, we observe that if Ωk,h holds then also the events
Ωi,j for pi, jq P rk, hshist hold. As such, we can sum up the bound of Eq. (27) over all the episodes i P JkK, thus concluding
the proof.

Lemma D.3. Let k P JKK and h P JHK. Let events E and Ωk,h hold. Then the following bounds hold:

k
ÿ

i“1

H´1
ÿ

j“h

εVi,j ď 2
a

H2TkL,

k
ÿ

i“1

H´1
ÿ

j“h

ξVi,j ď 2
a

H2TkL,

k
ÿ

i“1

H´1
ÿ

j“h

εQi,j ď 2
a

H2TkL,

k
ÿ

i“1

H´1
ÿ

j“h

εVi,j ď
a

Tk,

k
ÿ

i“1

H´1
ÿ

j“h

ξ
V

i,j ď
a

Tk,

k
ÿ

i“1

H´1
ÿ

j“h

εQi,j ď
a

Tk.

(28)

Moreover, for every s P S and a P A, the following bounds also hold:

k
ÿ

i“1

Itsi,h “ su

H´1
ÿ

j“h

εVi,j ď 2
b

H3Nk,hpsqL,

k
ÿ

i“1

Itsi,h “ su

H´1
ÿ

j“h

ξVi,j ď 2
b

H3Nk,hpsqL,

k
ÿ

i“1

Itsi,h “ su

H´1
ÿ

j“h

εQi,j ď 2
b

H3Nk,hpsqL,

k
ÿ

i“1

Itsi,h “ su

H´1
ÿ

j“h

εVi,j ď

b

HNk,hpsq,

k
ÿ

i“1

Itsi,h “ su

H´1
ÿ

j“h

ξ
V

i,j ď

b

HNk,hpsq,
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k
ÿ

i“1

Itsi,h “ su

H´1
ÿ

j“h

εQi,j ď

b

HNk,hpsq,

k
ÿ

i“1

Itsi,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

εVi,j ď 2
b

H3Nk,hps, aqL,

k
ÿ

i“1

Itsi,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

ξVi,j ď 2
b

H3Nk,hps, aqL,

k
ÿ

i“1

Itsi,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

εQi,j ď 2
b

H3Nk,hps, aqL,

k
ÿ

i“1

Itsi,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

εVi,j ď

b

HNk,hps, aq,

k
ÿ

i“1

Itsi,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

ξ
V

i,j ď

b

HNk,hps, aq,

k
ÿ

i“1

Itsi,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

εQi,j ď

b

HNk,hps, aq.

Proof. The proof follows a similar reasoning as that of Lemma 5 of (Azar et al., 2017), observing that under E and Ωk,h the
following events hold:

EazpF
r∆V ,k,h, H, Lq, EazpF

r∆V ,k,h,s, H, Lq, EazpF
r∆V ,k,h,s,a, H, Lq,

EazpF
r∆V ,k,h,B, H, Lq, EazpF

r∆V ,k,h,B,s, H, Lq, EazpF
r∆V ,k,h,B,s,a, H, Lq,

EazpF
r∆Q,k,h, H, Lq, EazpF

r∆Q,k,h,s, H, Lq, EazpF
r∆Q,k,h,s,a, H, Lq,

EazpF 1
r∆V ,k,h

,
1

?
L
,Lq, EazpF 1

r∆V ,k,h,s
,

1
?
L
,Lq, EazpF 1

r∆V ,k,h,s,a
,

1
?
L
,Lq,

EazpF 1
r∆V ,k,h,B,

1
?
L
,Lq, EazpF 1

r∆V ,k,h,B,s
,

1
?
L
,Lq, EazpF 1

r∆V ,k,h,B,s,a
,

1
?
L
,Lq,

EazpF 1
r∆Q,k,h

,
1

?
L
,Lq, EazpF 1

r∆Q,k,h,s
,

1
?
L
,Lq, EazpF 1

r∆Q,k,h,s,a
,

1
?
L
,Lq.

Remark D.1. With a slight abuse of notation, but to benefit the ease of reading, we will refer to the following lemmas also
for the summations in which the action set is not fixed but is taken in expectation over C ind. As an example, we will refer to
Lemma D.4 when upper bounding the summation:

k
ÿ

i“1

H´1
ÿ

j“h

EB„C indp¨|si,jq

”

Vπi
j`1psi,j , a

πipBq

i,j q

ı

. (29)

Considering the summations of the random variables that define the events (see Lemma 1 of Azar et al., 2017) and changing
the conditioning from
mathcalHk,h,B to Hk,h (i.e., removing Bk,h from the history) we see that the quantities in play retain the properties that
make them Martingale difference sequences. As such, we can apply the same derivations, obtaining the same bounds.

Lemma D.4 (Lemma 8 of Azar et al. (2017)). Let k P JKK and h P JHK. Let πk be the policy followed during episode k.
Under the events E and Ωk,h, the following holds for every s P S:
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k
ÿ

i“1

H´1
ÿ

j“h

Vπi
j`1psi,j , a

πipBi,jq

i,j q ď HTk ` 2
a

H4TkL `
4

3
H3L,

k
ÿ

i“1

Itsi,h “ su

H´1
ÿ

j“h

Vπi
j`1psi,j , a

πipBi,jq

i,j q ď H2Nk,hpsq ` 2
b

H5Nk,hpsqL `
4

3
H3L,

k
ÿ

i“1

Itsi,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

Vπi
j`1psi,j , a

πipBi,jq

i,j q ď H2Nk,hps, aq ` 2
b

H5Nk,hps, aqL `
4

3
H3L,

Proof. The proof of this Lemma directly derives from the one of Lemma 8 of (Azar et al., 2017), observing that under event
E , the following events hold:

EfrpGV,k,h, H
4Tk, H

3, Lq,

EfrpGV,k,h,s, H
5N 1

k,h, H
3, Lq,

EfrpGV,k,h,s,a, H
5N 1

k,h, H
3, Lq,

and by taking the expectation over both the states and the action availabilities. Eq. (43) and Eq. (44) of (Azar et al., 2017)
hold under this modified expectation since the cumulative reward is bounded with H .

Lemma D.5 (Lemma 9 of Azar et al. (2017)). Let k P JKK and h P JHK. Let πk be the policy followed during episode k.
Under the events E and Ωk,h, the following holds for every ps, aq P S ˆ A:

k
ÿ

i“1

H´1
ÿ

j“h

´

V˚
j`1psi,j , a

πipBi,jq

i,j q´Vπi
j`1psi,j , a

πipBi,jq

i,j q

¯

ď 4
a

H4TkL ` 2H
k

ÿ

i“1

H´1
ÿ

j“h

r∆V
i,jpsi,jq,

k
ÿ

i“1

Itsi,h “ su

H´1
ÿ

j“h

´

V˚
j`1psi,j , a

πipBi,jq

i,j q ´ Vπi
j`1psi,j , a

πipBi,jq

i,j q

¯

ď 4
b

H5Nk,hpsqL ` 2H
k

ÿ

i“1

Itsi,h “ su

H´1
ÿ

j“h

r∆V
i,jpsi,jq,

k
ÿ

i“1

Itsi,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

´

V˚
j`1psi,j , a

πipBi,jq

i,j q ´ Vπi
j`1psi,j , a

πipBi,jq

i,j q

¯

ď 4
b

H5Nk,hps, aqL ` 2H
k

ÿ

i“1

Itsi,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

r∆V
i,jpsi,jq.

Proof. The proof directly follows from the proof of Lemma 9 of (Azar et al., 2017), observing that events
EazpF

r∆V ,k,h, H, Lq, EazpF
r∆V ,k,h,s, H, Lq, and EazpF

r∆V ,k,h,s, H, Lq hold under E , and Ωk,h holds.

Lemma D.6 (Lemma 10 of Azar et al. (2017)). Let k P JKK and h P JHK. Let πk be the policy followed during episode k.
Under the events E and Ωk,h, the following holds for every s P S:

k
ÿ

i“1

H´1
ÿ

j“h

´

pVi,j`1psi,j , a
πipBi,jq

i,j q´Vπi
j`1psi,j , a

πipBi,jq

i,j q

¯
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ď 7H2S
a

ATkL ` 2H
k

ÿ

i“1

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q,

k
ÿ

i“1

Itsi,h “ su

H´1
ÿ

j“h

´

pVi,j`1psi,j , a
πipBi,jq

i,j q ´ Vπi
j`1psi,j , a

πipBi,jq

i,j q

¯

ď 7H2S
b

HANk,hpsqL ` 2H
k

ÿ

i“1

Itsi,h “ su

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q,

k
ÿ

i“1

Itsi,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

´

pVi,j`1psi,j , a
πipBi,jq

i,j q ´ Vπi
j`1psi,j , a

πipBi,jq

i,j q

¯

ď 7H2S
b

HANk,hps, aqL ` 2H
k

ÿ

i“1

Itsi,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q.

Proof. The proof directly follows that of Lemma 10 of (Azar et al., 2017), observing that under Ωk,h and E , the following
events hold:

EazpF
r∆V ,k,h, H, Lq, EazpF

r∆V ,k,h,s, H, Lq, EazpF
r∆V ,k,h,s,a, H, Lq.

Lemma D.7. Let k P JKK and h P JHK. Let πk be the policy followed during episode k. Under the events E and Ωk,h, the
following holds for every s P S:

k
ÿ

i“1

H´1
ÿ

j“h

Qπi
j psi,jq ď HTk ` 2

a

H4TkL `
4

3
H3L,

k
ÿ

i“1

Itsi,h “ su

H´1
ÿ

j“h

Qπi
j psi,jq ď H2Nk,hpsq ` 2

b

H5Nk,hpsqL `
4

3
H3L,

k
ÿ

i“1

Itsi,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

Qπi
j psi,jq ď H2Nk,hps, aq ` 2

b

H5Nk,hps, aqL `
4

3
H3L.

Proof. This proof follows a derivation similar to that of Lemma 8 of (Azar et al., 2017). Let us first recall the definition of
Qπi

j psi,jq:

Qπi
j psi,jq “ Var

B„C indp¨|si,jq

”

Qπi
j psi,j , a

πipBq

i,j q

ı

.

Under event E , the following events hold:

EfrpGQ,k,h, H
4Tk, H

3, Lq, EfrpGQ,k,h,s, H
5Nk,h, H

3Lq, and EfrpGQ,k,h,s,a, H
5Nk,h, H

3Lq.

Event EfrpGQ,k,h, H
4Tk, H

3, Lq implies that:

k
ÿ

i“1

H´1
ÿ

j“h

Qπi
j psi,jq ď

k
ÿ

i“1

E

«

H´1
ÿ

j“h

Qπi
j psi,jq|Hk,h

ff

` 2
a

H4TkL `
4

3
H3L.

Observing that, conditioned to Hk,h, Qπi
j psi,jq “ Vπi

j`1psi,j , a
πipBi,jq

i,j q since there is no variance on the reward at stage j,
we can then recursively apply the Law of Total Variance (see e.g., Thr. 9.5.5 of Blitzstein & Hwang, 2019) as done in (Azar
et al., 2017, Eq. 26) to obtain the following bound:
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k
ÿ

i“1

E

«

H´1
ÿ

j“h

Qπi
j psi,jq|Hk,h

ff

“ Var
psi,j ,Bi,jqjPJh`1,H´1K

«

H´1
ÿ

j“h`1

Rπipsi,j , a
πipBi,jq

i,j q

ff

ď HTk.

Putting everything together, we obtain the following bound:

k
ÿ

i“1

H´1
ÿ

j“h

Qπi
j psi,jq ď HTk ` 2

a

H4TkL `
4

3
H3L.

In a similar manner, from events EazpF
r∆Q,k,h,s, H, Lq and EazpF

r∆Q,k,h,s,a, H, Lq we can derive the bounds for the two
remaining summations, thus concluding the proof.

Lemma D.8. Let k P JKK and h P JHK. Let πk be the policy followed during episode k. Under the events E and Ωk,h, the
following holds for every s P S:

k
ÿ

i“1

H´1
ÿ

j“h

´

pQi,jpsi,jq ´ Qπi
j psi,jq

¯

ď H2
a

S2ATkL ` 7H2S
a

ATkL ` 4H3SLG

` 2H
k

ÿ

i“1

H´1
ÿ

j“h

bQi,jpsi,j , a
πipBi,jq

i,j q ` 2H
k

ÿ

i“1

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q,

k
ÿ

i“1

Itsi,h “ su

H´1
ÿ

j“h

´

pQi,jpsi,jq ´ Qπi
j psi,jq

¯

ď

b

H5S2ANk,hpsqL ` 7
b

H5S2ANk,hpsqL ` 4H3SLG

` 2H
k

ÿ

i“1

Itsi,h “ su

H´1
ÿ

j“h

bQi,jpsi,j , a
πipBi,jq

i,j q

` 2H
k

ÿ

i“1

Itsi,h “ su

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q,

k
ÿ

i“1

Itsi,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

´

pQi,jpsi,jq ´ Qπi
j psi,jq

¯

ď

b

H5S2ANk,hps, aqL ` 7
b

H5S2ANk,hps, aqL ` 4H3SLG

` 2H
k

ÿ

i“1

Itsi,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

bQi,jpsi,j , a
πipBi,jq

i,j q

` 2H
k

ÿ

i“1

Itsi,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q.

Proof. We first provide an upper bound to pQi,jpsi,jq ´ Qπi
j psi,jq, and we then bound its summation over episodes and

stages.

pQi,jpsi,jq ´ Qπi
j psi,jq “ EB„ pC ind

i p¨|si,jq

”

pQi,jpsi,j , a
πipBq

i,j q2
ı

´ EB„ pC ind
i p¨|si,jq

”

pQi,jpsi,j , a
πipBq

i,j q

ı2

´ EB„C indp¨|si,jq

”

Qπi
j psi,j , a

πipBq

i,j q2
ı

` EB„C indp¨|si,jq

”

Qπi
j psi,j , a

πipBq

i,j q

ı2
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ď EB„ pC ind
i p¨|si,jq

”

pQi,jpsi,j , a
πipBq

i,j q2
ı

´ EB„C indp¨|si,jq

”

Qπi
j psi,j , a

πipBq

i,j q2
ı

´ EB„ pC ind
i p¨|si,jq

”

Q˚
j psi,j , a

π˚
pBq

i,j q

ı2

` EB„C indp¨|si,jq

”

Q˚
j psi,j , a

π˚
pBq

i,j q

ı2

(30)

ď EB„ pC ind
i p¨|si,jq

”

pQi,jpsi,j , a
πipBq

i,j q2
ı

´ EB„C indp¨|si,jq

”

pQi,jpsi,j , a
πipBq

i,j q2
ı

` EB„C indp¨|si,jq

”

pQi,jpsi,j , a
πipBq

i,j q2
ı

´ EB„C indp¨|si,jq

”

Qπi
j psi,j , a

πipBq

i,j q2
ı

` 2H
´

p pC ind
i ´ C indqQ˚

j

¯

psi,jq

ď EB„ pC ind
i p¨|si,jq

”

pQi,jpsi,j , a
πipBq

i,j q2
ı

´ EB„C indp¨|si,jq

”

pQi,jpsi,j , a
πipBq

i,j q2
ı

` EB„C indp¨|si,jq

”

pQi,jpsi,j , a
πipBq

i,j q2
ı

´ EB„C indp¨|si,jq

”

Qπi
j psi,j , a

πipBq

i,j q2
ı

` 4H
H2L

Nipsi,jq
, (31)

where Eq. (30) follows from observing that, under Ωk,h, pQi,j ě Q˚
j ě Qπi

j ,@ps, aq P S ˆ A, and Eq. (31) is obtained via
Hoeffding’s inequality. Putting this bound in the double summation, we get:

k
ÿ

i“1

H´1
ÿ

j“h

´

pQi,jpsi,jq ´ Qπi
j psi,jq

¯

ď

k
ÿ

i“1

H´1
ÿ

j“h

´

EB„ pC ind
i p¨|si,jq

”

pQi,jpsi,j , a
πipBq

i,j q2
ı

´ EB„C indp¨|si,jq

”

pQi,jpsi,j , a
πipBq

i,j q2
ı¯

looooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooon

paq

`

k
ÿ

i“1

H´1
ÿ

j“h

´

EB„C indp¨|si,jq

”

pQi,jpsi,j , a
πipBq

i,j q2 ´ Qπi
j psi,j , a

πipBq

i,j q2
ı¯

loooooooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooooooon

pbq

`

k
ÿ

i“1

H´1
ÿ

j“h

ˆ

4H
H2L

Nipsi,jq

˙

looooooooooooomooooooooooooon

pcq

(32)

We can bound term paq with H2
a

S2ATkL by bounding pQi,j with H and applying Thr. 2.1 of (Weissman et al., 2003), and
term pcq with 4H3SLG by applying a pigeonhole argument. We now bound term pbq as follows:

pbq “

k
ÿ

i“1

H´1
ÿ

j“h

ÿ

BPPpAq

C indpB|si,jq

´

p pQi,jpsi,j , a
πipBq

i,j q ` Qπi
j psi,j , a

πipBq

i,j qqp pQi,jpsi,j , a
πipBq

i,j q ´ Qπi
j psi,j , a

πipBq

i,j qq

¯

ď 2H
k

ÿ

i“1

H´1
ÿ

j“h

ÿ

BPPpAq

C indpB|si,jqp pQi,jpsi,j , a
πipBq

i,j q ´ Qπi
j psi,j , a

πipBq

i,j qq

ď 2H
k

ÿ

i“1

H´1
ÿ

j“h

εQi,j ` 2H
k

ÿ

i“1

H´1
ÿ

j“h

bQi,jpsi,j , a
πipBi,jq

i,j q

` 2H
k

ÿ

i“1

H´1
ÿ

j“h

ˆ

E
s1P pPip¨|si,j ,a

πipBi,jq

i,j q

pVi,j`1ps1q ´ E
s1„P p¨|si,j ,a

πipBi,jq

i,j q
V πi
j`1ps1q

˙

ď 2H
k

ÿ

i“1

H´1
ÿ

j“h

εQi,j ` 2H
k

ÿ

i“1

H´1
ÿ

j“h

bQi,jpsi,j , a
πipBi,jq

i,j q ` 2H
k

ÿ

i“1

H´1
ÿ

j“h

εVi,j ` 2H
k

ÿ

i“1

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q
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` 2H2
k

ÿ

i“1

H´1
ÿ

j“h

∥ pPip¨|si,j , a
πipBi,jq

i,j q ´ P pp¨|si,j , a
πipBi,jq

i,j q∥1 (33)

ď 2H2
a

TkL ` 2H
k

ÿ

i“1

H´1
ÿ

j“h

bQi,jpsi,j , a
πipBi,jq

i,j q ` H2S
a

ATkL ` 4H2
a

TkL ` 2H
k

ÿ

i“1

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q, (34)

where Eq. (33) is obtained by adding and subtracting 2H
řk

i“1

řH´1
j“h pP pVi,j`1qpsi,j , a

πipBi,jq

i,j q and

2H
řk

i“1

řH´1
j“h

r∆V
i,j`1psi,j`1q, and Eq. (34) is obtained since event EazpF

r∆Q,k,h, H, Lq holds under E . Plugging
the bounds of terms paq, pbq, and pcq into Eq. (32), we finally obtain:

k
ÿ

i“1

H´1
ÿ

j“h

´

pQi,jpsi,jq ´ Qπi
j psi,jq

¯

ď H2
a

S2ATkL ` 2H2
a

TkL ` 2H
k

ÿ

i“1

H´1
ÿ

j“h

bQi,jpsi,j , a
πipBi,jq

i,j q

` H2S
a

ATkL ` 4H2
a

TkL ` 2H
k

ÿ

i“1

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q ` 4H3SLG

ď H2
a

S2ATkL ` 7H2S
a

ATkL ` 2H
k

ÿ

i“1

H´1
ÿ

j“h

bQi,jpsi,j , a
πipBi,jq

i,j q

` 2H
k

ÿ

i“1

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q ` 4H3SLG.

In a similar manner, and observing that events EazpF
r∆Q,k,h,s, H, Lq and EazpF

r∆Q,k,h,s,a, H, Lq hold under E , we can
derive the bounds to the remaining summations, thus concluding the proof.

Lemma D.9 (Summation over typical episodes of state-action wise model errors, see Lemma 11 of Azar et al. (2017)). Let
k P JKK and h P JHK. Let πk be the policy followed during episode k. Under events E and Ωk,h the following inequalities
hold for every ps, aq P S ˆ A:

k
ÿ

i“1

Iti P rkstypu

H´1
ÿ

j“h

´

p pPi ´ P qV ˚
j`1

¯

psi,j , a
πipBi,jq

i,j q

ď
a

6HSATkLG `
2

3
HSALG ` 2

g

f

f

eHSALG
k

ÿ

i“1

H´1
ÿ

j“h

r∆V
i,jpsi,jq, (35)

k
ÿ

i“1

Iti P rkstyp,s, si,h “ su

H´1
ÿ

j“h

´

p pPi ´ P qV ˚
j`1

¯

psi,j , a
πipBi,jq

i,j q

ď

b

6H2SANk,hpsqLG `
2

3
HSALG

` 2

g

f

f

eHSALG
k

ÿ

i“1

Itsi,h “ su

H´1
ÿ

j“h

r∆V
i,jpsi,jq,

k
ÿ

i“1

Iti P rkstyp,s,a, si,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

´

p pPi ´ P qV ˚
j`1

¯

psi,j , a
πipBi,jq

i,j q

ď

b

6H2SANk,hps, aqLG `
2

3
HSALG
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` 2

g

f

f

eHSALG
k

ÿ

i“1

Itsi,h “ s, a
πipBi,hq

i,h u

H´1
ÿ

j“h

r∆V
i,jpsi,jq,

where:

rkstyp :“
!

i P JkK : psi,h, a
πipBi,hq

i,h q P rps, aqsk, i ě 11600H3S3A2AL2G,@h P JHK
)

,

rkstyp,s :“
!

i P JkK : psi,h, a
πipBi,hq

i,h q P rps, aqsk, Nk,hpsq ě 11600H3S3A2AL2G,@h P JHK
)

,

rkstyp,s,a :“
!

i P JkK : psi,h, a
πipBi,hq

i,h q P rps, aqsk, Nk,hps, aq ě 11600H3S3A2AL2G,@h P JHK
)

,

rps, aqsk :“ tps, aq P S ˆ A : Nkps, aq ě H,Nk,hpsq ě H,@h P JHKu .

Proof. We adapt the proof of (Azar et al., 2017, Lemma 11). We begin by demonstrating the bound of Eq. (35):

k
ÿ

i“1

Iti P rkstypu

H´1
ÿ

j“h

´

p pPi ´ P qV ˚
j`1

¯

psi,j , a
πipBi,jq

i,j q

ď

k
ÿ

i“1

Iti P rkstypu

H´1
ÿ

j“h

»

–

g

f

f

e

2V˚
j`1psi,j , a

πipBi,jq

i,j qL

Nipsi,j , a
πipBi,jq

i,j q
`

2HL

3Nipsi,j , a
πipBi,jq

i,j q

fi

fl (36)

ď
?
2L

g

f

f

f

f

f

e

k
ÿ

i“1

H´1
ÿ

j“h

V˚
j`1psi,j , a

πipBi,jq

i,j q

loooooooooooooooomoooooooooooooooon

paq

g

f

f

f

f

f

e

k
ÿ

i“1

Iti P rkstypu

H´1
ÿ

j“h

1

Nipsi,j , a
πipBi,jq

i,j q
loooooooooooooooooooooooomoooooooooooooooooooooooon

pbq

`
2

3
HSALG, (37)

where Eq. (36) follows from the application of Bernstein’s inequality and Eq. (37) follows from the application of Cauchy-
Schwarz’s inequality together with a pigeonhole argument.

Using another pigeonhole argument, we can bound term pbq with SAG. By adding and subtracting Vπi
j`1psi,j , a

πipBi,jq

i,j q to
term paq, we can rewrite it as:

paq “

k
ÿ

i“1

H´1
ÿ

j“h

Vπi
j`1psi,j , a

πipBi,jq

i,j q

loooooooooooooooomoooooooooooooooon

pcq

`

k
ÿ

i“1

H´1
ÿ

j“h

pV˚
j`1psi,j , a

πipBi,jq

i,j q ´ Vπi
j`1psi,j , a

πipBi,jq

i,j qq

looooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooon

pdq

.

As events E and Ωk,h hold, we can apply Lemma D.4 and Lemma D.5 to bound terms pcq and pdq, respectively, thus
obtaining:

paq ď HTk ` 6
a

H4TkL `
4

3
H3L ` 2H

k
ÿ

i“1

H´1
ÿ

j“h

r∆V
i,jpsi,jq

ď 3HTk ` 2H
k

ÿ

i“1

H´1
ÿ

j“h

r∆V
i,jpsi,jq, (38)

where Eq. (38) holds under the condition of rkstyp. Plugging the bounds of terms paq and pbq into Eq. (37), rearranging the
terms, and applying the subadditivity of the square root, we finally get:
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k
ÿ

i“1

Iti P rkstypu

H´1
ÿ

j“h

´

p pPi ´ P qV ˚
j`1

¯

psi,j , a
πipBi,jq

i,j q ď
a

6HSATkLG `
2

3
HSALG

` 2

g

f

f

eHSALG
k

ÿ

i“1

H´1
ÿ

j“h

r∆V
i,jpsi,jq.

In a similar manner, we can demonstrate the bound on the remaining summations, thus concluding the proof.

Lemma D.10 (Summation over typical episodes of state-action value function bonus term). Let k P JKK and h P JHK. Let
πk be the policy followed during episode k. Let the UCB bonus for the state-action value function be defined as:

bQk,hps, aq “

g

f

f

e

4LVars1„ pPkp¨|s,aq
r pVk,h`1ps1qs

Nkps, aq
`

7HL

3pNkps, aq ´ 1q

`

g

f

f

e

4Es1„ pPkp¨|s,aq
rmint 29002H3S3A2AL3

N 1
k,h`1ps1q

, H2us

Nkps, aq
.

Under the events E and Ωk,h, the following inequalities hold for every ps, aq P S ˆ A:

k
ÿ

i“1

Iti P rkstypu

H´1
ÿ

j“h

bQi,jpsi,j , a
πipBi,jq

i,j q

ď
a

28HSATkLG `
7

3
HSALG ` 5800

?
H3S5A22AL3G2

`

g

f

f

e8HSALG
k

ÿ

i“1

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q,

k
ÿ

i“1

Iti P rkstyp,s, si,h “ su

H´1
ÿ

j“h

bQi,jpsi,j , a
πipBi,jq

i,j q

ď

b

28H2SANk,hpsqLG `
7

3
HSALG ` 5800

?
H3S5A22AL3G2

`

g

f

f

e8HSALG
k

ÿ

i“1

Itsi,h “ su

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q,

k
ÿ

i“1

Iti P rkstyp,s,a, si,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

bQi,jpsi,j , a
πipBi,jq

i,j q

ď

b

28H2SANk,hps, aqLG `
7

3
HSALG ` 5800

?
H3S5A22AL3G2

`

g

f

f

e8HSALG
k

ÿ

i“1

Itsi,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q.

where:

rkstyp :“
!

i P JkK : psi,h, a
πipBi,hq

i,h q P rps, aqsk, i ě 11600H3S3A2AL2G,@h P JHK
)

,
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rkstyp,s :“
!

i P JkK : psi,h, a
πipBi,hq

i,h q P rps, aqsk, Nk,hpsq ě 11600H3S3A2AL2G,@h P JHK
)

,

rkstyp,s,a :“
!

i P JkK : psi,h, a
πipBi,hq

i,h q P rps, aqsk, Nk,hps, aq ě 11600H3S3A2AL2G,@h P JHK
)

,

rps, aqsk :“ tps, aq P S ˆ A : Nkps, aq ě H,Nk,hpsq ě H,@h P JHKu .

Proof. The proof of this lemma closely follows that of (Azar et al., 2017, Lem. 12). We can rewrite the summation as:

k
ÿ

i“1

Iti P rkstypu

H´1
ÿ

j“h

bQi,jpsi,j , a
πipBi,jq

i,j q ď

k
ÿ

i“1

Iti P rkstypu

H´1
ÿ

j“h

g

f

f

f

e

4LVar
s1„ pPip¨|si,j ,a

πipBi,jq

i,j q
r pVi,j`1ps1qs

Nipsi,j , a
πipBi,jq

i,j q
looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

paq

`

k
ÿ

i“1

Iti P rkstypu

H´1
ÿ

j“h

7HL

3pNipsi,j , a
πipBi,jq

i,j q ´ 1q
looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

pbq

`

k
ÿ

i“1

Iti P rkstypu

H´1
ÿ

j“h

g

f

f

f

e

4E
s1„ pPip¨|si,j ,a

πipBi,jq

i,j q
b
Q

i,j`1ps1q

Nipsi,j , a
πipBi,jq

i,j q
looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

pcq

, (39)

where b
Q

i,j`1ps1q “ mint 29002H3S3A2AL3

N 1
i,j`1ps1q

, H2u. First of all, we bound term pbq with 7
3HSALG by applying a pigeonhole

argument. To bound term paq, we apply Cauchy-Schwarz’s inequality to obtain:

paq ď
?
4L

g

f

f

f

f

f

e

k
ÿ

i“1

H´1
ÿ

j“h

pVi,j`1psi,j , a
πipBi,jq

i,j q

looooooooooooooooomooooooooooooooooon

pdq

g

f

f

f

f

f

e

k
ÿ

i“1

Iti P rkstypu

H´1
ÿ

j“h

1

Nipsi,j , a
πipBi,jq

i,j q
loooooooooooooooooooooooomoooooooooooooooooooooooon

peq

. (40)

By applying a pigeonhole argument, we bound term peq with SAG, and we rewrite term pdq as follows:

pdq “

k
ÿ

i“1

H´1
ÿ

j“h

Vπi
j`1psi,j , a

πipBi,jq

i,j q

loooooooooooooooomoooooooooooooooon

pfq

`

k
ÿ

i“1

H´1
ÿ

j“h

´

pVi,j`1psi,j , a
πipBi,jq

i,j q ´ Vπi
j`1psi,j , a

πipBi,jq

i,j q

¯

looooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooon

pgq

.

By applying Lemma D.4 and Lemma D.6 to bound terms pfq and pgq, respectively, we obtain the following bound:

pdq ď HTk ` 2
a

H4TkL `
4

3
H3L ` 7H2S

a

ATkL ` 2H
k

ÿ

i“1

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q

ď 4HTk ` 2H
k

ÿ

i“1

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q, (41)

where Eq. (41) holds under the condition of rkstyp. Combining the bounds of terms pdq and peq into Eq. (40) and applying
the subadditivity of the square root, we obtain:
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paq ď
a

16HSATkLG `

g

f

f

e8HSALG
k

ÿ

i“1

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q.

To bound term pcq, we first apply Cauchy-Schwarz’s inequality, obtaining:

pcq ď 2

g

f

f

f

f

f

e

k
ÿ

i“1

H´1
ÿ

j“h

E
s1„ pPip¨|si,j ,a

πipBi,jq

i,j q
b
Q

i,j`1ps1q

looooooooooooooooooooooomooooooooooooooooooooooon

phq

g

f

f

f

f

f

e

k
ÿ

i“1

Iti P rkstypu

H´1
ÿ

j“h

1

Nipsi,j , a
πipBi,jq

i,j q
loooooooooooooooooooooooomoooooooooooooooooooooooon

piq

. (42)

Similar to term peq, we bound term piq with SAG. To bound term phq, we first rewrite it as:

phq “

k
ÿ

i“1

H´1
ÿ

j“h

´

pPib
Q

i,j`1

¯

psi,j , a
πipBi,jq

i,j q

“

k
ÿ

i“1

H´1
ÿ

j“h

´

p pPi ´ P qb
Q

i,j`1

¯

psi,j , a
πipBi,jq

i,j q

looooooooooooooooooooooooomooooooooooooooooooooooooon

pjq

`

k
ÿ

i“1

H´1
ÿ

j“h

´

Pb
Q

i,j`1

¯

psi,j , a
πipBi,jq

i,j q

“ pjq `

k
ÿ

i“1

H´1
ÿ

j“h

´´

Pb
Q

i,j`1

¯

psi,j , a
πipBi,jq

i,j q ´ b
Q

i,j`1psi,j`1q

¯

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

pkq

`

k
ÿ

i“1

H´1
ÿ

j“h

b
Q

i,j`1psi,j`1q

loooooooooooomoooooooooooon

plq

. (43)

By bounding b
Q

i,j`1 with H2 and combining the application of (Weissman et al., 2003, Theorem 2.1) and of a pigeonhole
argument, we can upper bound term pjq as:

H2S
a

ATkL.

To bound term pkq, we first observe that it is a Martingale difference sequence, and as such we can bound it via the event
Eaz

´

F
b
Q
,k,h

, H2, L
¯

, which holds under E , thus obtaining:

pkq ď 2H2
a

TkL.

By applying the definition of b
Q

i,j`1 together with a pigeonhole argument, we can bound term plq as:

plq ď 29002H3S4A2AL3G.

By applying the bounds of terms pjq, pkq, and plq into Eq. (43), we obtain:

phq ď H2S
a

ATkL ` 2H2
a

TkL ` 29002H3S4A2AL3G.

By applying the bounds of terms phq and piq to Eq. (42), applying the definition of rkstyp, and applying the subadditivity of
the square root, we get:
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pcq ď 2
a

3HSATkL ` 5800
?
H3S5A22AL3G2.

Finally, we can combine the bounds of terms paq, pbq, and pcq into Eq. (39), obtaining the following bound:

k
ÿ

i“1

Iti P rkstypu

H´1
ÿ

j“h

bQi,jpsi,j , a
πipBi,jq

i,j q ď
a

16HSATkLG `

g

f

f

e8HSAL3G
k

ÿ

i“1

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q

`
7

3
HSALG ` 2

a

3HSATkL ` 5800
?
H3S5A22AL3G2

ď
a

28HSATkLG `

g

f

f

e8HSALG
k

ÿ

i“1

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q

`
7

3
HSALG ` 5800

?
H3S5A22AL3G2.

In a similar manner, observing that events Eaz
´

F
b
Q
,k,h,s

, H2, L
¯

, and Eaz
´

F
b
Q
,k,h,s,a

, H2, L
¯

also hold under E , we can
derive the bounds for the remaining summations, thus concluding the proof.

Lemma D.11 (Summation over typical episodes of state value function bonus term). Let k P JKK and h P JHK. Let πk be
the policy followed during episode k. Let the UCB bonus for the state value function be defined as:

bVk,hpsq “

g

f

f

e

4LVarB„ pC ind
k p¨|sq

r pQk,hps, πk,hps,Bqqs

Nkpsq
`

7HL

3pNkpsq ´ 1q

`

g

f

f

e

4EB„ pC ind
k p¨|sq

rmint 13502H3S3A2AL3

Nk,hps,πk,hps,Bqq
, H2us

Nkpsq
.

Under the events E and Ωk,h, the following inequalities hold for every s P S:

k
ÿ

i“1

Iti P rkstypu

H´1
ÿ

j“h

bVi,jpsi,jq ď
a

45HSATkLG `
7

3
HSLG ` 2700

?
H3S5A22AL3G2

`

g

f

f

e31H2S2ALG2

k
ÿ

i“1

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q,

k
ÿ

i“1

Iti P rkstyp,s, si,h “ su

H´1
ÿ

j“h

bVi,jpsi,jq ď

b

45H2SANk,hpsqLG `
7

3
HSLG ` 2700

?
H3S5A22AL3G2

`

g

f

f

e31H2S2ALG2

k
ÿ

i“1

Itsi,h “ su

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q,

k
ÿ

i“1

Iti P rkstyp,s,a, si,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

bVi,jpsi,jq

ď

b

45H2SANk,hps, aqLG `
7

3
HSLG ` 2700

?
H3S5A22AL3G2
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`

g

f

f

e31H2S2ALG2

k
ÿ

i“1

Itsi,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q.

where:

rkstyp :“
!

i P JkK : psi,h, a
πipBi,hq

i,h q P rps, aqsk, i ě 11600H3S3A2AL2G,@h P JHK
)

,

rkstyp,s :“
!

i P JkK : psi,h, a
πipBi,hq

i,h q P rps, aqsk, Nk,hpsq ě 11600H3S3A2AL2G,@h P JHK
)

,

rkstyp,s,a :“
!

i P JkK : psi,h, a
πipBi,hq

i,h q P rps, aqsk, Nk,hps, aq ě 11600H3S3A2AL2G,@h P JHK
)

,

rps, aqsk :“ tps, aq P S ˆ A : Nkps, aq ě H,Nk,hpsq ě H,@h P JHKu .

Proof. We can rewrite the summation as:

k
ÿ

i“1

Iti P rkstypu

H´1
ÿ

j“h

bVi,jpsi,jq ď

k
ÿ

i“1

Iti P rkstypu

H´1
ÿ

j“h

g

f

f

e

4LVarB„ pC ind
i p¨|si,jq

r pQi,jpsi,j , a
πipBq

i,j qs

Nipsi,jq
looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

paq

`

k
ÿ

i“1

Iti P rkstypu

H´1
ÿ

j“h

7HL

3pNipsi,jq ´ 1q
loooooooooooooooooooooomoooooooooooooooooooooon

pbq

`

k
ÿ

i“1

Iti P rkstypu

H´1
ÿ

j“h

g

f

f

e

4EB„ pC ind
i p¨|si,jq

b
V

i,jpsi,j ,Bq

Nipsi,jq
loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

pcq

, (44)

where b
V

i,jpsi,j ,Bq “ mint 13502H3S3A2AL3

N 1
i,jpsi,j ,a

πipBq

i,j q
, H2u. First of all, we can bound term pbq by applying a pigeonhole argument

as:

pbq ď
7

3
HSLG.

We now focus on bounding term paq. By applying Cauchy-Schwarz’s inequality, we obtain:

paq ď
?
4L

g

f

f

f

f

f

e

k
ÿ

i“1

H´1
ÿ

j“h

pQi,jpsi,jq

looooooooomooooooooon

pdq

g

f

f

f

f

f

e

k
ÿ

i“1

Iti P rkstypu

H´1
ÿ

j“h

1

Nipsi,jq
looooooooooooooooomooooooooooooooooon

peq

. (45)

Using the pigeonhole argument, we bound term peq with SG. We can rewrite term pdq as follows:

pdq “

k
ÿ

i“1

H´1
ÿ

j“h

Qπi
j psi,jq

looooooooomooooooooon

pfq

`

k
ÿ

i“1

H´1
ÿ

j“h

´

pQi,jpsi,jq ´ Qπi
j psi,jq

¯

loooooooooooooooooooomoooooooooooooooooooon

pgq

. (46)
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We can bound term pfq by using Lemma D.7 as:

pfq “

k
ÿ

i“1

H´1
ÿ

j“h

Qπi
j psi,jq

ď HTk ` 2
a

H4TkL `
4

3
H3L,

and term pgq by using Lemma D.8 as:

pgq “

k
ÿ

i“1

H´1
ÿ

j“h

´

pQi,jpsi,jq ´ Qπi
j psi,jq

¯

ď H2
a

S2ATkL ` 7H2S
a

ATkL ` 4H3SLG

` 2H
k

ÿ

i“1

H´1
ÿ

j“h

bQi,jpsi,j , a
πipBi,jq

i,j q ` 2H
k

ÿ

i“1

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q

By plugging the bounds of terms pfq and pgq into Eq. (46) we get:

pdq ď HTk ` 2
a

H4TkL `
4

3
H3L ` H2

a

S2ATkL ` 7H2S
a

ATkL ` 4H3SLG

` 2H
k

ÿ

i“1

H´1
ÿ

j“h

bQi,jpsi,j , a
πipBi,jq

i,j q ` 2H
k

ÿ

i“1

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q

ď HTk ` 2
a

H4TkL `
4

3
H3L ` H2

a

S2ATkL ` 7H2S
a

ATkL ` 4H3SLG

` 2H
a

28HSATkLG ` 2H

g

f

f

e8HSALG
k

ÿ

i“1

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q

`
14

3
H2SALG ` 11600

?
H5S5A22AL3G2 ` 2H

k
ÿ

i“1

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q (47)

ď 8HTk ` 2H
k

ÿ

i“1

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q `

g

f

f

e32H3SALG
k

ÿ

i“1

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q, (48)

where Eq. (47) follows by applying Lemma D.10 and Eq. (48) holds under rkstyp. By plugging the bounds of terms pdq and
peq into Eq. (45), rearranging the terms, and applying the subadditivity of the square root, we obtain:

paq ď
a

32HSTkLG `

g

f

f

e31H2S2ALG2

k
ÿ

i“1

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q. (49)

The derivation of the bound of term pcq is similar to the derivation in Lemma D.10 from Eq. (42) onward. First we apply
Cauchy-Schwarz’s inequality, rewriting the term as:
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pcq ď 2

g

f

f

f

f

f

e

k
ÿ

i“1

H´1
ÿ

j“h

EB„ pC ind
i p¨|si,jq

b
V

i,jpsi,j ,Bq

loooooooooooooooooooomoooooooooooooooooooon

phq

g

f

f

f

f

f

e

k
ÿ

i“1

Iti P rkstypu

H´1
ÿ

j“h

1

Nipsi,jq
looooooooooooooooomooooooooooooooooon

piq

. (50)

With a pigeonhole argument, we bound term piq with SG. We now rewrite term phq as:

phq “

k
ÿ

i“1

H´1
ÿ

j“h

´

pC ind
i b

V

i,j

¯

psi,jq

“

k
ÿ

i“1

H´1
ÿ

j“h

´

p pC ind
i ´ C indqb

V

i,j

¯

psi,jq

loooooooooooooooooooomoooooooooooooooooooon

pjq

`

k
ÿ

i“1

H´1
ÿ

j“h

´

C indb
V

i,j

¯

psi,jq

“ pjq `

k
ÿ

i“1

H´1
ÿ

j“h

´´

C indb
V

i,j

¯

psi,jq ´ b
V

i,jpsi,jq

¯

loooooooooooooooooooooooomoooooooooooooooooooooooon

pkq

`

k
ÿ

i“1

H´1
ÿ

j“h

b
V

i,jpsi,jq

looooooooomooooooooon

plq

. (51)

By bounding b
V

i,j`1 with H2 and combining the application of (Weissman et al., 2003, Theorem 2.1) and of a pigeonhole
argument, we can upper bound term pjq as:

pjq ď H2
a

S2ATkL.

To bound term pkq, we first observe that it is a Martingale difference sequence, and as such we can bound it via the event
EazpF

b
V
,k,h

, H2, Lq, which holds under E , thus obtaining:

pkq ď 2H2
a

TkL.

By applying the definition of b
V

i,j together with a pigeonhole argument, we can bound term plq as:

plq ď 13502H3S4A22AL3G.

By putting together the bounds of terms pjq, pkq, and plq into Eq. (51), we get:

phq ď H2
a

S2ATkL ` 2H2
a

TkL ` 13502H3S4A22AL3G. (52)

By applying the bounds of terms phq and piq to Eq. (50), applying the definition of rkstyp, and applying the subadditivity of
the square root, we get:

pcq ď
a

HSATkLG ` 2700
?
H3S5A22AL3G2. (53)

Finally, we can combine the bounds of terms paq, pbq, and pcq into Eq. (44), obtaining the following bound:
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k
ÿ

i“1

Iti P rkstypu

H´1
ÿ

j“h

bVi,jpsi,jq ď
a

32HSTkLG `

g

f

f

e31H2S2ALG2

k
ÿ

i“1

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q

`
7

3
HSLG `

a

HSATkLG ` 2700
?
H3S5A22AL3G2

ď
a

45HSATkLG `

g

f

f

e31H2S2ALG2

k
ÿ

i“1

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q

`
7

3
HSLG ` 2700

?
H3S5A22AL3G2.

In a similar manner, observing that events EazpF
b
V
,k,h,s

, H2, Lq and EazpF
b
V
,k,h,s,a

, H2, Lq also hold under E , we can
derive the bounds for the remaining summations, thus concluding the proof.

Lemma D.12 (Upper bound of state-action value function estimation error). Let k P JKK and h P JHK. Let πk be the policy
followed during episode k. Under E and Ωk,h, the following holds for every ps, aq P S ˆ A:

pQk,hps, aq ´ Q˚
hps, aq ď min

#

1350

d

H3S3A2AL2G

Nk,hps, aq
, H

+

.

Proof. We begin the proof by observing that, under Ωk,h, pQk,hps, aq ě Q˚
hps, aq for every s P S and a P A. We can

rewrite:

pQk,hps, aq ´ Q˚
hps, aq “

1

Nk,hps, aq

k
ÿ

i“1

Itsi,h “ s, a
πipBi,hq

i,h “ au

´

pQk,hpsi,h, a
πipBi,hq

i,h q ´ Q˚
hpsi,h, a

πipBi,hq

i,h q

¯

ď
1

Nk,hps, aq

k
ÿ

i“1

Itsi,h “ s, a
πipBi,hq

i,h “ au

´

pQi,hpsi,h, a
πipBi,hq

i,h q ´ Qπi

h psi,h, a
πipBi,hq

i,h q

¯

(54)

“
1

Nk,hps, aq

k
ÿ

i“1

Itsi,h “ s, a
πipBi,hq

i,h “ au r∆Q
i,hpsi,h, a

πipBi,hq

i,h q, (55)

where Eq. (54) follows from the fact that pQk,h is monotonically decreasing in k by definition and by observing that
Q˚

h ě Qπi

h .

Recalling the upper bound of
řk

i“1 Itsi,h “ s, a
πipBi,hq

i,h “ au r∆Q
i,hpsi,h, a

πipBi,hq

i,h q:

k
ÿ

i“1

Itsi,h “ s, a
πipBi,hq

i,h “ au r∆Q
k,hpsi,h, a

πipBi,hq

i,h q

ď e
k

ÿ

i“1

Itsi,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

«

bQi,jpsi,j , a
πipBi,jq

i,j q ` 2bVi,j`1psi,j`1q

`

´

p pPi ´ P qV ˚
j`1

¯

psi,j , a
πipBi,jq

i,j q `
8H2SL

Nipsi,j , a
πipBi,jq

i,j q
` 4H

d

2AL

Nipsi,j`1q

ff

` 2e
b

H3Nk,hps, aqL ` 4e
b

HNk,hps, aqL ` 4e
b

H3Nk,hps, aqL,

we can apply two pigeonhole arguments, obtaining the following upper bound:
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k
ÿ

i“1

Itsi,h “ s, a
πipBi,hq

i,h “ au r∆Q
k,hpsi,h, a

πipBi,hq

i,h q

ď e
k

ÿ

i“1

Itsi,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

«

bQi,jpsi,j , a
πipBi,jq

i,j q ` 2bVi,j`1psi,j`1q

`

´

p pPi ´ P qV ˚
j`1

¯

psi,j , a
πipBi,jq

i,j q

ff

` 8H2S2ALG ` 4
b

H3S2ANk,hps, aqL

` 2e
b

H3Nk,hps, aqL ` 4e
b

HNk,hps, aqL ` 4e
b

H3Nk,hps, aqL (56)

:“ Uk,h,s,a.

We now bound the summations over episodes and stages of the different terms. By applying Lemma D.11, we can bound the
summation over typical episodes of the state value function bonus term as:

k
ÿ

i“1

Iti P rkstyp, si,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

bVi,jpsi,jq

ď

b

45H2SANk,hps, aqLG `
7

3
HSLG ` 2700

?
H3S5A22AL3G2

`

g

f

f

f

f

f

e

31H2S2ALG2

k
ÿ

i“1

Itsi,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

r∆V
i,j`1psi,j`1q

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

paq

. (57)

By applying the same procedure as in Eq. (26), we can bound term paq as:

paq ď

k
ÿ

i“1

Iti P rkstyp, si,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

bVi,j`1psi,j`1q

`

k
ÿ

i“1

Iti P rkstyp, si,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

εQi,j`1

` 2H
k

ÿ

i“1

Iti P rkstyp, si,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

d

2AL

Nipsi,i`1q

`

k
ÿ

i“1

Iti P rkstyp, si,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

r∆Q
i,j`1psi,j`1, a

πipBi,j`1q

i,j`1 q

ď

b

45H2SANk,hps, aqLG `
7

3
HSLG ` 2700

?
H3S5A22AL3G2 `

?
31H3S2ALG2

` 2
b

H3Nk,hps, aqL ` 2
b

H3S2ANk,hps, aqL ` HUk,h,s,a, (58)

where Eq. (58) follows from the application of Lemma D.3 and Lemma D.11, the application of a pigeonhole argument, and
by bounding

řk
i“1 Itsi,h “ s, a

πipBi,hq

i,h “ au
řH´1

j“h
r∆Q
i,j`1psi,j`1, a

πipBi,j`1q

i,j`1 q with HUk,h,s,a.

By applying the bound of term paq into Eq. (57), applying the condition of rkstyp, and rearranging terms, we obtain:
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k
ÿ

i“1

Iti P rkstyp, si,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

bVi,jpsi,jq

ď 4
b

45H2SANk,hps, aqLG `

b

31H3S2ALG2Uk,h,s,a

` 3014
?
H4S5A22AL3G2.

By applying Lemma D.10, we can bound the summation over typical episodes of the state-action value function bonus term
as:

k
ÿ

i“1

Iti P rkstyp, si,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

bQi,jpsi,j , a
πipBi,jq

i,j q

ď

b

28H2SANk,hps, aqLG `
7

3
HSAL2 ` 5800

?
H3S5A22AL3G2

`

g

f

f

f

f

f

e

8HSALG
k

ÿ

i“1

It, si,h “ s, a
πipBi,hq

i,h “ au r∆V
i,j`1psi,j`1qq

loooooooooooooooooooooooooooomoooooooooooooooooooooooooooon

paq

. (59)

By applying the bound of term paq, as computed in Eq. (58), and plugging it into Eq. (59), we get:

k
ÿ

i“1

Iti P rkstyp, si,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

bQi,jpsi,j , a
πipBi,jq

i,j q

ď 4
b

28H2SANk,hps, aqLG `

b

8H2SALGUk,h,s,a

` 5961
?
H3S5A22AL3G2.

By applying Lemma D.9 we can bound the summation over typical episodes of the state-action wise model errors as:

k
ÿ

i“1

Iti P rkstyp, si,h “ s, a
πipBi,hq

i,h “ au

H´1
ÿ

j“h

´

p pPi ´ P qV ˚
j`1

¯

psi,j , a
πipBi,jq

i,j q

ď

b

6H2SANk,hps, aqLG `
2

3
HSALG ` 2

b

H2SALGUk,h,s,a.

By applying two pigeonhole arguments, combining the bounds, and accounting for the regret of non-typical episodes, we
can then upper bound Eq. (56) as:

Uk,h,s,a ď 92e
b

H3SA2ANk,hps, aqLG ` 16e
b

H3S2ALG2Uk,h,s,a

` 11996e
?
H4S5A22AL3G2 ` 11600H3S3A2AL3.

Letting:

α “ e

„

92
b

H3SA2ANk,hps, aqLG ` 11996
?
H4S5A22AL3G2

ȷ

` 11600H3S3A2AL2G,
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β “ 16e
?
H3S2ALG2,

we can solve for Uk,h,s,a as Uk,h,s,a ď 2α ` β2, and obtain the following bound:

Uk,h,s,a ď 184e
b

H3SA2ANk,hps, aqLG ` 23992e
?
H4S5A22AL3G2 ` 23200H3S3A2AL2G ` 256e2H3S2ALG2

ď 1350
b

H3S3A2ANk,hps, aqL2G, (60)

where Eq. (60) follows from the application of the rkstyp condition. Plugging this result into Eq. (55), and observing that
the error cannot be greater than H , we get the following bound to the estimation error of the state-action value function due
to the optimistic approach:

pQk,hps, aq ´ Q˚
hps, aq ď min

#

1350

d

H3S3A2AL2G

Nk,hps, aq
, H

+

,

thus concluding the proof.

Lemma D.13 (Upper bound of state value function estimation error). Let k P JKK and h P JHK. Let πk be the policy
followed during episode k. Under E and Ωk,h, the following holds for every ps, aq P S ˆ A:

pVk,hpsq ´ V ˚
h psq ď min

#

2900

d

H3S3A2AL2G

Nk,hpsq
, H

+

.

Proof. We begin the proof by observing that, under Ωk,h, pQk,hps, aq ě Q˚
hps, aq for every s P S and a P A. We can

rewrite:

pVk,hpsq ´ V ˚
h psq “

1

Nk,hpsq

k
ÿ

i“1

Itsi,h “ su

´

pVk,hpsi,hq ´ V ˚
h psi,hq

¯

ď
1

Nk,hpsq

k
ÿ

i“1

Itsi,h “ su

´

pVi,hpsi,hq ´ V πi

h psi,hq

¯

(61)

“
1

Nk,hpsq

k
ÿ

i“1

Itsi,h “ su r∆V
i,hpsi,hq, (62)

where Eq. (61) follows from the fact that pVk,h is monotonically decreasing in k by definition and by observing that
V ˚
h ě V πi

h .

Recalling the upper bound of
řk

i“1 Itsi,h “ su r∆V
i,hpsi,hq:

k
ÿ

i“1

Itsi,h “ su r∆V
i,jpsi,jq ď e2

k
ÿ

i“1

H´1
ÿ

j“h

«

bVi,jpsi,jq ` 2bQi,jpsi,j , a
πipBi,jq

i,j q ` 2
´

p pPi ´ P qV ˚
j`1

¯

psi,j , a
πipBi,jq

i,j q

` EB„C indp¨|si,jq

«

8H2SL

3Nipsi,j , a
πipBq

i,j q

ff

`
8HSL

3Nipsi,j , a
πipBi,jq

i,j q
`

2H22AL

Nipsi,jq
`

2H2AL

3Nipsi,jq

`

d

2H2L

Nipsi,jq

ff

` 4e2
b

H3Nk,hpsqL ` 6e2
b

HNk,hpsqL ` 4e2
b

HNk,hpsqL,
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by applying several pigeonhole arguments, we can derive the following upper bound:

k
ÿ

i“1

Itsi,h “ su r∆V
i,jpsi,jq ď e2

k
ÿ

i“1

H´1
ÿ

j“h

”

bVi,jpsi,jq ` 2bQi,jpsi,j , a
πipBi,jq

i,j q ` 2
´

p pPi ´ P qV ˚
j`1

¯

psi,j , a
πipBi,jq

i,j q

ı

` 8e2H2S22ALG ` e2
b

2H3SNk,hpsqL ` 4e2
b

H3Nk,hpsqL ` 10e2
b

HNk,hpsqL

(63)

:“ Uk,h,s,

where Eq. (63) is obtained observing that, when applying the pigeonhole argument over a summation in which the argument
depends on the expectation over B, the worst-case allocation of summation terms is the one in which all actions are available.
We now bound the summations over the typical episodes of the different terms.

By applying Lemma D.10, we can bound the summation over typical episodes of the state-action value function bonus term
as:

k
ÿ

i“1

Iti P rkstyp, si,h “ su

H´1
ÿ

j“h

bQi,jpsi,j , a
πipBi,jq

i,j q ď

b

28H2SANk,hpsqLG `

b

8H2SALGUk,h,s

`
7

3
HSALG ` 5800

?
H3S5A22AL3G2.

By applying Lemma D.11, we can bound the summation over typical episodes of the state value function bonus term as:

k
ÿ

i“1

Iti P rkstyp, si,h “ su

H´1
ÿ

j“h

bVi,jpsi,jq ď

b

40H2SANk,hpsqLG `

b

31H3S2ALG2Uk,h,s

`
7

3
HSLG ` 2700

?
H3S5A22AL3G2.

By applying Lemma D.9 we can bound the summation over typical episodes of the state-action wise model errors as:

k
ÿ

i“1

Iti P rkstyp, si,h “ su

H´1
ÿ

j“h

´

p pPi ´ P qV ˚
j`1

¯

psi,j , a
πipBi,jq

i,j q

ď

b

6H2SANk,hpsqLG `
2

3
HSALG ` 2

b

H2SALGUk,h,s.

By combining the bounds into Eq. (63), we get:

Uk,h,s ď 38e2
b

H3SA2ANk,hpsqLG ` 16e2
b

H3S2ALG2Uk,h,s

` 14317e2
?
H3S5A22AL3G2 ` 11600H3S3A2AL3 (64)

Letting:

α “ 38e2
b

H3SA2ANk,hpsqLG ` 14317e2
?
H3S5A22AL3G2 ` 11600H3S3A2AL2G,

β “ 16e2
?
H3S2ALG2, (65)
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we can solve for Uk,h,s as Uk,h,s ď 2α ` β2, and obtain the following bound:

Uk,h,s ď 76e2
b

H3SA2ANk,hpsqLG ` 28634e2
?
H3S5A22AL3G2 ` 23200H3S3A2AL2G ` 256e4H3S2ALG2

ď 2900
b

H3S3A2ANk,hpsqL2G, (66)

where Eq. (66) holds if Nk,hpsq ě
?
11600H3S3A2AL2G. Plugging this result into Eq. (62), and observing that the error

cannot be greater than H , we get the following bound to the estimation error of the state-action value function due to the
optimistic approach:

pVk,hpsq ´ V ˚
h psq ď min

#

2900

d

H3S3A2AL2G

Nk,hpsq
, H

+

,

thus concluding the proof.

Lemma D.14 (Optimism). Let the optimistic bonuses be defined as:

bQk,hps, aq “

g

f

f

e

4LVars1„ pPkp¨|s,aq
r pVk,h`1ps1qs

Nkps, aq
`

7HL

3pNkps, aq ´ 1q

`

g

f

f

e

4Es1„ pPkp¨|s,aq
rmint 29002H3S3A2AL3

N 1
k,h`1ps1q

, H2us

Nkps, aq
,

bVk,hpsq “

g

f

f

e

4LVarB„ pC ind
k p¨|sq

r pQk,hps, πk,hps,Bqqs

Nkpsq
`

7HL

3pNkpsq ´ 1q

`

g

f

f

e

4EB„ pC ind
k p¨|sq

rmint 13502H3S3A2AL3

Nk,hps,πk,hps,Bqq
, H2us

Nkpsq
.

Then, under event E , the following set of events hold:

Ωk,h :“
!

pVi,jpsq ě V ˚
j psq ^ pQi,jps, aq ě Q˚

j ps, aq,@pi, jq P rk, hshist, s P S, a P A
)

,

for k P JKK and h P JHK, where:

rk, hshist :“ tpi, jq : i P JKK, j P JHK, pi ă kq _ pi “ k, j ě hqu.

Proof. We demonstrate this result by induction. We begin by observing that pVk,H`1psq “ V ˚
H`1psq “ 0 and

pQk,H`1ps, aq “ Q˚
H`1ps, aq “ 0 for every k P JKK, s P S, and a P A. To prove the induction, we need to prove

that, if Ωk,h`1 holds, then also Ωk,h holds. We prove this result for a generic k P JKK, and we observe that we can then
apply this procedure recursively for all values of k, starting from k “ 1.

We begin by demonstrating that pQk,hps, aq ě Q˚
hps, aq. Let us recall the definition of pQk,hps, aq:
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pQk,hps, aq “ Rps, aq ` bQk,hps, aq `

´

pPk
pVk,h`1

¯

ps, aq,

observing that if pQk,hps, aq ě H ´ h, the optimism holds trivially. We can write:

pQk,hps, aq ´ Q˚
hps, aq “ bQk,hps, aq `

´

pPk
pVk,h`1

¯

ps, aq ´
`

PV ˚
h`1

˘

ps, aq

“ bQk,hps, aq `

´

pPkp pVk,h`1 ´ V ˚
h`1q

¯

ps, aq `

´

p pPk ´ P qV ˚
h`1

¯

ps, aq

ě bQk,hps, aq `

´

p pPk ´ P qV ˚
h`1

¯

ps, aq (67)

where Eq. (67) follows from the induction assumption. Under event E , we can apply the empirical Bernstein inequality
(Maurer & Pontil, 2009):

ˇ

ˇ

ˇ

´

p pPk ´ P qV ˚
h`1

¯

ps, aq

ˇ

ˇ

ˇ
ď

d

2pV˚
k,h`1ps, aqL

Nkps, aq
`

7HL

3pNkps, aq ´ 1q
,

where pV˚
k,h`1ps, aq :“ Vars1„ pPkp¨|s,aq

rV ˚
h`1ps1qs. As such, we obtain:

pQk,hps, aq ´ Q˚
hps, aq ě bQk,hps, aq ´

d

2pV˚
k,h`1ps, aqL

Nkps, aq
´

7HL

3pNkps, aq ´ 1q

“

d

4pVk,h`1ps, aqL

Nkps, aq
´

d

2pV˚
k,h`1ps, aqL

Nkps, aq
loooooooooooooooooooooooomoooooooooooooooooooooooon

paq

`

g

f

f

e

4
ř

s1PS
pPkps1|s, aqmin

!

29002H3S3A22AL3

N 1
k,h`1ps1q

, H2
)

Nkps, aq
. (68)

Observing that:

paq ě

$

&

%

´

c

2pV˚
k,h`1ps,aq´4pVk,h`1ps,aq

Nkps,aq
if pVk,h`1ps, aq ď pV˚

k,h`1ps, aq,

0 otherwise,

we now bound pV˚
k,h`1 in terms of pVk,h`1 from above. Observing that:

VarrXs “ E rX ´ ErXss
2

“ E rX ˘ Y ´ ErXs ˘ ErY ss
2

“ E rpX ´ Y q ´ ErX ´ Y s ` Y ´ ErY ss
2

ď 2E rpX ´ Y q ´ ErX ´ Y ss
2

` 2E rY ´ ErY ss
2

“ 2VarrX ´ Y s ` 2VarrY s, (69)

we can then write:
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pV˚
k,h`1ps, aq ď 2pVk,h`1ps, aq ` 2 Var

y„ pPkp¨|s,aq

rV ˚
h`1ps1q ´ pVk,h`1ps1qs

ď 2pVk,h`1ps, aq ` 2
ÿ

s1PS

pPkps1|s, aq

´

pVk,h`1ps1q ´ V ˚
h`1ps1q

¯2

.

By combining this bound with the result of Lemma D.13, we obtain the following bound on term paq:

paq ě

$

’

&

’

%

´

d

4
ř

s1PS
pPkps1|s,aq min

"

29002H3S3A22AL3

N1
k,h`1

ps1q
,H2

*

Nkps,aq
if pVk,h`1ps, aq ď pV˚

k,h`1ps, aq,

0 otherwise.

By plugging this result into Eq. (68), we obtain that pQk,hps, aq ´ Q˚
hps, aq ě 0.

We now demonstrate that pVk,hpsq ě V ˚
h psq. Let us recall the definition of pVk,hpsq:

pVk,hpsq “ mint pVk´1,hpsq, H, bVk,hpsq ` EB„ pC ind
k p¨|sq

r pQk,hps, a
πkpBq

k,h qsu.

Again, observe that, if pVk,hpsq “ H , the optimism holds trivially. Moreover, if pVk,hpsq “ pV k ´ 1, hpsq, the opti-
mism holds trivially under Ωk,h. As such, we only need to demonstrate the case in which pVk,hpsq “ bVk,hpsq `

EB„ pC ind
k p¨|sq

r pQk,hps, a
πkpBq

k,h qs. We can write:

pVk,hpsq ´ V ˚
h psq “ bVk,hpsq `

´

pC ind
k

pQk,h

¯

psq ´
`

C indQ˚
h

˘

psq

“ bVk,hpsq `

´

pC ind
k p pQk,h ´ Q˚

hq

¯

psq `

´

p pC ind
k ´ C indqQ˚

h

¯

psq

ě bVk,hpsq `
ÿ

BPPpAq

pC ind
k pB|sq

´

pQk,hps, π˚
hps,Bqq ´ Q˚

hps, π˚
hps,Bqq

¯

`

´

p pC ind
k ´ C indqQ˚

h

¯

psq (70)

ě bVk,hpsq `

´

p pC ind
k ´ C indqQ˚

h

¯

psq, (71)

where Eq. (70) derives by observing that πk is the greedy policy w.r.t. pVk,h, and Eq. (71) follows from the optimism over the
state-action value function we just demonstrated.

Under event E , we can apply the empirical Bernstein inequality:

ˇ

ˇ

ˇ

´

p pC ind
k ´ C indqQ˚

h

¯

psq

ˇ

ˇ

ˇ
ď

d

2pQ˚
k,hpsqL

Nkpsq
`

7HL

3pNkpsq ´ 1q
, (72)

where pQ˚
k,hpsq :“ VarB„ pC ind

k p¨|sq
rQ˚

hps, a
π˚

pBq

k,h qs. As such, we obtain:

pVk,hpsq ´ V ˚
h psq ě bVk,hpsq ´

d

2pQ˚
k,hpsqL

Nkpsq
´

7HL

3pNkpsq ´ 1q
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“

d

4pQk,hpsqL

Nkpsq
´

d

2pQ˚
k,hpsqL

Nkpsq
loooooooooooooooooomoooooooooooooooooon

pbq

`

g

f

f

f

e

4
ř

BPPpAq
pC ind
k pB|sqmin

"

13502H3S3A22AL3

Nk,hps,a
πkpBq

k,h q
, H2

*

Nkpsq
. (73)

Observing that:

pbq ě

$

&

%

´

c

2pQ˚
k,hpsq´4pQk,hpsq

Nkpsq
if pQk,hpsq ď pQ˚

k,hpsq,

0 otherwise,

we now bound pQ˚
k,h in terms of pQk,h from above. By applying the result of Eq. (69), we get that:

pQ˚
k,hpsq ď 2pQk,hpsq ` 2 Var

B„ pC ind
k p¨|sq

rQ˚
hps, a

πkpBq

k,h q ´ pQk,hps, a
πkpBq

k,h qs

ď 2pQk,hpsq ` 2
ÿ

BPPpAq

pC ind
k pB|sq

´

Q˚
hps, a

πkpBq

k,h q ´ pQk,hps, a
πkpBq

k,h q

¯2

. (74)

By combining this bound with the result of Lemma D.12, we obtain the following bound on term pbq:

pbq ě

$

’

’

&

’

’

%

´

g

f

f

e

4
ř

BPPpAq
pC ind
k pB|sq min

#

13502H3S3A22AL3

Nk,hps,a
πkpBq

k,h
q

,H2

+

Nkpsq
if pQk,hpsq ď pQ˚

k,hpsq,

0 otherwise.

By plugging this result into Eq. (73), we finally obtain that pVk,hpsq ě V ˚
h psq, thus demonstrating optimism.

Theorem 5.2 (Regret Upper Bound S-UCBVI with independent availability and per-stage disclosure). For any δ P p0, 1q,
with probability 1 ´ δ, the per-stage disclosure regret of S-UCBVI on any SleMDP with per-stage disclosure independent
action availabilities is bounded by:

RPSpS-UCBVI, T q ď512H
?
SATLG

` 4982H6S3A2AL2G,

where L “ logp80HS2A2AT {δq and G “ logpHSAT q. In particular, for T ě ΩpH10S5A422Aq and selecting δ “ 2A{T ,
we have:

E rRPSpS-UCBVI, T qs ď rO
´

H
?
SAT

¯

.

Proof. This proof adapts the result of (Azar et al., 2017, Theorem 2) to the Sleeping MDP setting in the case of i.i.d. action
set availability and per-stage disclosure. We start by considering a Sleeping MDP in which the transition probabilities are
stage-independent, as the generalization is straightforward and we consider it at the end of the proof.

Let events E and Ωk,h hold. Under these events, Lemma D.14 holds.

As such, we define the regret suffered by an algorithm A after T time steps as:

RSD
T pAq “

K
ÿ

i“1

pV ˚
1 psi,1q ´ V πi

1 psi,1qq :“ ∆V
i,1psi,1q.
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We can define a pseudo-regret suffered by an algorithm A as:

R̃SD
T pAq “

K
ÿ

i“1

´

pVi,1psi,1q ´ V̂ πi
1 psi,1q

¯

:“ r∆V
i,1psi,1q.

By applying Lemma D.1, we first observe that
řk

i“1 ∆
V
i,1psi,1q ď

řk
i“1

r∆V
i,1psi,1q, and we decompose the pseudo-regret as:

K
ÿ

i“1

r∆V
i,hpsi,hq ď e2

K
ÿ

i“1

H´1
ÿ

j“1

«

bVi,jpsi,jq ` EB„C indp¨|si,jqrbQi,jpsi,j , a
πipBq

i,j qs `
1

H
bQi,jpsi,j , a

πipBi,jq

i,j q

` EB„C indp¨|si,jq

“

εVi,j,B
‰

`
1

H
εVi,j ` EB„C indp¨|si,jq

”?
2LεVi,j,B

ı

`

?
2L

H
εVi,j `

?
2LεQi,j

` EB„C indp¨|si,jq

”´

p pPi ´ P qV ˚
j`1

¯

psi,j , a
πipBq

i,j q

ı

`
1

H

´

p pPi ´ P qV ˚
j`1

¯

psi,j , a
πipBi,jq

i,j q

` EB„C indp¨|si,jq

«

8H2SL

3Nipsi,j , a
πipBq

i,j q

ff

`
8HSL

3Nipsi,j , a
πipBi,jq

i,j q

`
2H22AL

Nipsi,jq
`

2H2AL

3Nipsi,jq
`

d

2Qπi
j psi,jqL

Nipsi,jq
`

2HL

3Nipsi,jq

ff

.

By applying several pigeonhole arguments, we obtain:

K
ÿ

i“1

r∆V
i,hpsi,hq ď e2

K
ÿ

i“1

H´1
ÿ

j“1

«

bVi,jpsi,jq ` EB„C indp¨|si,jqrbQi,jpsi,j , a
πipBq

i,j qs `
1

H
bQi,jpsi,j , a

πipBi,jq

i,j q

` EB„C indp¨|si,jq

“

εVi,j,B
‰

`
1

H
εVi,j ` EB„C indp¨|si,jq

”?
2LεVi,j,B

ı

`

?
2L

H
εVi,j `

?
2LεQi,j

` EB„C indp¨|si,jq

”´

p pPi ´ P qV ˚
j`1

¯

psi,j , a
πipBq

i,j q

ı

`
1

H

´

p pPi ´ P qV ˚
j`1

¯

psi,j , a
πipBi,jq

i,j q

`

d

2Qπi
j psi,jqL

Nipsi,jq
looooooomooooooon

paq

ff

` 9e2H2S2A2ALG (75)

:“ UK,1.

We can bound the summation of term paq over typical episodes as follows:

K
ÿ

i“1

Iti P rkstypu

H´1
ÿ

j“1

paq “

K
ÿ

i“1

Iti P rkstypu

H´1
ÿ

j“1

d

2Qπi
j psi,jqL

Nipsi,jq

ď
?
2L

g

f

f

e

K
ÿ

i“1

H´1
ÿ

j“1

Qπi
j psi,jq

g

f

f

e

K
ÿ

i“1

Iti P rkstypu

H´1
ÿ

j“1

1

Nipsi,jq
(76)

ď
?
2L

c

HT ` 2
?
H4TL `

4

3
H3L

?
SG (77)

ď
?
4HSTLG, (78)

where Eq. (76) is obtained by applying Cauchy-Schwarz’s inequality, Eq. (77) follows from the application of Lemma D.7
and of a pigeonhole argument, and Eq. (78) holds under rkstyp.
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By applying this bound, together with Lemmas D.3, D.9, D.10, D.11, the condition of rkstyp, accounting for the regret of
non-typical episodes, and rearranging terms, we get that:

UK,1 ď 256
a

HSATkLG ` 117392H3S3A2AL2G ` 113
b

H2S2ALG2UK,1. (79)

By letting:

α “ 256
?
HSATLG ` 117392H3S3A2AL2G,

β “ 113
?
H2S2ALG2, (80)

we can solve for UK,1 as UK,1 ď 2α ` β2, and obtain the following bound:

UK,1 ď 512
?
HSATLG ` 247533H3S3A2AL2G,

which we can plug into Eq. (75) to get the following upper bound on the regret:

RPSpS-UCBVI, T q ď 512
?
HSATLG ` 4982H3S3A2AL2G.

Considering now stage-dependent state transitions, we can address this generalization by considering a new Sleeping MDP
with state space X such that |X | “ SH . As such, the regret in this case is upper bounded by:

RPSpS-UCBVI, T q ď O
´?

H2SATLG ` H6S3A2AL2G
¯

“: UBPSpδq,

w.p. at least 1 ´ δ.

To obtain an upper bound for the expected regret in the case of stage-independent transitions, we select δ “ 2A{T , and
obtain that, if T ě 2A, it holds that:

E rRPSpS-UCBVI, T qs “ E rRPSpS-UCBVI, T qI tRPSpS-UCBVI, T q ď UBPSpδqus

` E rRPSpS-UCBVI, T qI tRPSpS-UCBVI, T q ą UBPSpδqus

ď UBPSpδq ` Tδ (81)

ď 512

b

HSAT log p80HS2AT 2q
2
logpHSAT q

` 4982H3S3A2A logp80HS2AT 2q2 logpHSAT q ` 2A, (82)

where Equation (81) follows by applying the high probability regret upper bound and by observing that
RPSpS-UCBVI, T q ď T . Moving to stage-dependent state transitions, we can generalize as above and rewrite Equa-
tion (82) as:

E rRPSpS-UCBVI, T qs ď 512H

b

SAT log p80H3S2AT 2q
2
logpH2SAT q

` 4982H6S3A2A logp80H3S2AT 2q2 logpH2SAT q ` 2A

“ rO
´

H
?
SAT ` H6S3A2A

¯

. (83)

Finally, we observe that whenever T ě ΩpH10S5A22Aq, the upper bound of the expected regret is of order rOpH
?
SAT q,

thus concluding the proof.
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E. Numerical Validation
In this appendix, we propose the StochasticFrozenLake setting and numerically validate our S-UCBVI against UCBVI,
showing the efficacy of exploiting the knowledge of action availability. The code to reproduce the experiments is available
at https://github.com/marcomussi/SleepingRL.

Setting. The StochasticFrozenLake environment is a modification of the well-known FrozenLake to allow holes in the
lake to open and close stochastically, effectively limiting the action availability of the agent stochastically during the episode.
The probability of a cell of the grid being a hole at any given stage is denoted via parameter p, except for the goal cell and
the cell in which the agent is located at the beginning of the stage, which cannot be holes. We vary the probability of holes
in the lake as p P t0, 0.5, 0.75u and the grid size of the lake as G P t2, 3, 4u. We consider a horizon H “ 10 to ensure
that the agent can reach the goal. We consider K “ 2 ¨ 105 episodes, and we compare S-UCBVI and UCBVI in terms of
instantaneous reward averaged over 5 runs, with a 95% confidence interval. We also report the optimum computed apriori
for reference.

Results. The results of the experiment are reported in Figure 7. We observe that, when p “ 0, i.e., there are no holes in the
lake, both S-UCBVI and UCBVI manage to achieve the optimum instantaneous reward. As p and G increase, we observe
that S-UCBVI manages to achieve the optimum, whereas UCBVI settles to a suboptimal value, with the gap between the
two algorithms increasing in a directly proportional manner w.r.t. the two parameters.
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(e) p “ 0.5, G “ 3.
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(g) p “ 0, G “ 4.
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(h) p “ 0.5, G “ 4.
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(i) p “ 0.75, G “ 4.

Figure 7. Performances in terms of instantaneous reward in the StochasticFrozenLake environment with horizon H “ 10, number of
episodes K “ 2 ¨ 105, hole probability p P t0, 0.5, 0.75u and grid size G P t2, 3, 4u (5 runs, mean ˘ 95% C.I.).
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